Question

Let X1,...,Xn be a random sample from Poisson(θ). Use the factorization theorem to find the sufficient...

Let X1,...,Xn be a random sample from Poisson(θ).

Use the factorization theorem to find the sufficient statistic T for θ.

Homework Answers

Answer #1

Using factorization theorem find the sufficient statistic for poission distribution

Solution file is attached go through it

Thanks

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, . . . , Xn be a random sample from a Poisson distribution. (a)...
Let X1, . . . , Xn be a random sample from a Poisson distribution. (a) Prove that Pn i=1 Xi is a sufficient statistic for λ. (b) The MLE for λ in a Poisson distribution is X. Use this fact and the result of part (a) to argue that the MLE is also a sufficient statistic for λ.
Let X1, . . . , Xn be a random sample from the following pdf: f(x|θ)=...
Let X1, . . . , Xn be a random sample from the following pdf: f(x|θ)= (x/θ)*e^(-x^2/2θ). x>0 (a) Find a sufficient statistic for θ.
Let X1, ... , Xn be a sample of iid Beta(4, ?) random variables with ?...
Let X1, ... , Xn be a sample of iid Beta(4, ?) random variables with ? ∈ (0, ∞). a) Determine the likelihood function L(?). b) Use the Fisher–Neyman factorization theorem to determine a sufficient statistic S for ?.
Let X1, ... , Xn be a sample of iid Gamma(?, 1) random variables with ?...
Let X1, ... , Xn be a sample of iid Gamma(?, 1) random variables with ? ∈ (0, ∞). a) Determine the likelihood function L(?). b) Use the Fisher–Neyman factorization theorem to determine a sufficient statistic S for ?.
Let X1, . . . , Xn be a random sample from a Bernoulli(θ) distribution, θ...
Let X1, . . . , Xn be a random sample from a Bernoulli(θ) distribution, θ ∈ [0, 1]. Find the MLE of the odds ratio, defined by θ/(1 − θ) and derive its asymptotic distribution.
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0,...
Suppose that (X1, · · · , Xn) is a random sample from uniform distribution U(0, θ). (a) Prove that T(X1, · · · , Xn) = X(n) is minimal sufficient for θ. (X(n) is the largest order statistic, i.e., X(n) = max{X1, · · · , Xn}.) (b) In addition, we assume θ ≥ 1. Find a minimal sufficient statistic for θ and justify your answer.
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the...
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/xlnθ , 1 < x < θ. c) Let Zn = nlnY1. Find the limiting distribution of Zn. d) Let Wn = nln( θ/Yn ). Find the limiting distribution of Wn.
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
Let X1, …,Xn be a random sample from f(x; θ) = θ exp(-xθ) , x>0. Use...
Let X1, …,Xn be a random sample from f(x; θ) = θ exp(-xθ) , x>0. Use the likelihood ratio test to determine test H0 θ=1 against H1 θ ≠ 1.
Let X1, X2,...,Xn be a random sample from Bernoulli (p). Determine a sufficient statistic for p...
Let X1, X2,...,Xn be a random sample from Bernoulli (p). Determine a sufficient statistic for p and derive the UMVUE and MLE of T(p)=p^2(1-p)^2.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT