Question

Let X1, . . . , Xn be a random sample from the following pdf: f(x|θ)=...

  1. Let X1, . . . , Xn be a random sample from the following pdf:


    f(x|θ)= (x/θ)*e^(-x^2/2θ). x>0

    (a) Find a sufficient statistic for θ.

Homework Answers

Answer #1

for x > 0

The joint PDF of X1, X2, ..., Xn is, by independence is,

Let

Thus,

By Factorization theorem,

is sufficient statistic for θ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x ≤ 1 , 0 < θ < ∞ Find the method of moments estimator of θ.
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) =...
Let X1,..., Xn be a random sample from a distribution with pdf as follows: fX(x) = e^-(x-θ) , x > θ 0 otherwise. Find the sufficient statistic for θ. Find the maximum likelihood estimator of θ. Find the MVUE of θ,θˆ Is θˆ a consistent estimator of θ?
Let X1,…, Xn be a sample of iid random variables with pdf f (x; ?) =...
Let X1,…, Xn be a sample of iid random variables with pdf f (x; ?) = 3x2 /(?3) on S = (0, ?) with Θ = ℝ+. Determine i) a sufficient statistic for ?. ii) F(x). iii) f(n)(x)
Let X1,…, Xn be a sample of iid random variables with pdf f (x ∶ ?)...
Let X1,…, Xn be a sample of iid random variables with pdf f (x ∶ ?) = 1/? for x ∈ {1, 2,…, ?} and Θ = ℕ. Determine the MLE of ?.
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) =...
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) = θx^(θ−1) , 0 < x < 1, θ > 0. Is there an unbiased estimator of some function γ(θ), whose variance attains the Cramer-Rao lower bound?
1. Let X1, X2, . . . , Xn be a random sample from a distribution...
1. Let X1, X2, . . . , Xn be a random sample from a distribution with pdf f(x, θ) = 1 3θ 4 x 3 e −x/θ , where 0 < x < ∞ and 0 < θ < ∞. Find the maximum likelihood estimator of ˆθ.
Let X1, X2 · · · , Xn be a random sample from the distribution with...
Let X1, X2 · · · , Xn be a random sample from the distribution with PDF, f(x) = (θ + 1)x^θ , 0 < x < 1, θ > −1. Find an estimator for θ using the maximum likelihood
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x;...
Let X1, X2, · · · , Xn be a random sample from the distribution, f(x; θ) = (θ + 1)x^ −θ−2 , x > 1, θ > 0. Find the maximum likelihood estimator of θ based on a random sample of size n above
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f...
Let X1,…, Xn be a sample of iid Exp(?1, ?2) random variables with common pdf f (x; ?1, ?2) = (1/?1)e−(x−?2)/?1 for x > ?2 and Θ = ℝ × ℝ+. a) Show that S = (X(1), ∑ni=1 Xi ) is jointly sufficient for (?1, ?2). b) Determine the pdf of X(1). c) Determine E[X(1)]. d) Determine E[X2(1) ]. e ) Is X(1) an MSE-consistent estimator of ?2? f) Given S = (X(1), ∑ni=1 Xi )is a complete sufficient statistic...
Let X1. ..., Xn, be a random sample from Exponential(β) with pdf f(x) = 1/β(e^(-x/β)) I(0,...
Let X1. ..., Xn, be a random sample from Exponential(β) with pdf f(x) = 1/β(e^(-x/β)) I(0, ∞)(x), B > 0 where β is an unknown parameter. Find the UMVUE of β^2.