Question

Let X and Y have a bivariate normal distribution with parameters μX = 0, σX =...

Let X and Y have a bivariate normal distribution with parameters μX = 0, σX = 3; μY = 8, σY = 5; ρ = 0.6. Find the following probabilities.

P(-6 < X < 6)

P(6 < Y < 14 | X = 2)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X and Y have a bivariate normal distribution with parameters μX = 0, σX =...
Let X and Y have a bivariate normal distribution with parameters μX = 0, σX = 3; μY = 8, σY = 5; ρ = 0.6. Find the following probabilities. (A) P(-6 < X < 6) (B) P(6 < Y < 14 | X = 2)
Exercise 10.45. Suppose that the joint distribution of X,Y is bivariate normal with parameters σX,σY,ρ,µX,µY as...
Exercise 10.45. Suppose that the joint distribution of X,Y is bivariate normal with parameters σX,σY,ρ,µX,µY as described in Section 8.5. (a) Compute the conditional probability density of X given Y =y. (b) Find E[X|Y].
Let X and Y be two independent random variables with μX =E(X)=2,σX =SD(X)=1,μY =2,σY =SD(Y)=3. Find...
Let X and Y be two independent random variables with μX =E(X)=2,σX =SD(X)=1,μY =2,σY =SD(Y)=3. Find the mean and variance of (i) 3X (ii) 6Y (iii) X − Y
You have two random variables X and Y X -> μX = 5 , σX =...
You have two random variables X and Y X -> μX = 5 , σX = 3 Y -> μY = 7 , σY = 4 Now, we define two new random variables Z = X - Y W = X + Y Answer the below questions: μZ =                            [ Select ]                       ["3", "1", "-2"]       σZ =                     ...
Given a random variable X following normal distribution with mean of -3 and standard deviation of...
Given a random variable X following normal distribution with mean of -3 and standard deviation of 4. Then random variable Y=0.4X+5 is also normal. (1)Find the distribution of Y, i.e. μy,σy (2)Find the probabilities P(−4<X<0),P(−1<Y<0) (3)Find the probabilities(let n size =8) P(−4<X¯<0),P(3<Y¯<4) (4)Find the 53th percentile of the distribution of X
1. A and b are not correlated, treat as separate problems a) The random variable X...
1. A and b are not correlated, treat as separate problems a) The random variable X has uniform continuous distribution on the interval [0, 10]. Find the distribution of Y = X3 and P(Y > 50). b) The random variables X and Y are jointly bivariate normal with parameters µX = 0, σX = 1, µY = 0, σY = 2 and ρ = 0.9. i) Find P(Y > 0) ii) Find P(Y > 0|X = 1)
Given a random variable XX following normal distribution with mean of -3 and standard deviation of...
Given a random variable XX following normal distribution with mean of -3 and standard deviation of 4. Then random variable Y=0.4X+5Y=0.4X+5 is also normal. (1)(2pts) Find the distribution of YY, i.e. μY,σY.μY,σY. (2)(3pts) Find the probabilities P(−4<X<0),P(−1<Y<0).P(−4<X<0),P(−1<Y<0). (3)(3pts) Find the probabilities P(−4<X¯<0),P(3<Y¯<4).P(−4<X¯<0),P(3<Y¯<4). (4)(4pts) Find the 53th percentile of the distribution of XX.
Let descrete random variable X~Poisson(6). Find: Probability P(X=5) Probability P(X=2) Probability P(X<3) Probability P(X>6) μX σX
Let descrete random variable X~Poisson(6). Find: Probability P(X=5) Probability P(X=2) Probability P(X<3) Probability P(X>6) μX σX
Let (X1, Y1), . . . ,(Xn, Yn), be a random sample from a bivariate normal...
Let (X1, Y1), . . . ,(Xn, Yn), be a random sample from a bivariate normal distribution with parameters µ1, µ2, σ2 1 , σ2 2 , ρ. (Note: (X1, Y1), . . . ,(Xn, Yn) are independent). What is the joint distribution of (X ¯ , Y¯ )?
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where...
Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where x = 1, 2, 3; y = 1, 2, x + y ≤ 4 , that is, (x, y) are {(1, 1),(1, 2),(2, 1),(2, 2),(3, 1)} . (a) Find c > 0 . (b) Find μX (c) Find μY (d) Find σ^2 X (e) Find σ^2 Y (f) Find Cov (X, Y ) (g) Find ρ , Corr (X, Y ) (h) Are X...