Let the random variable X and Y have the joint pmf f(x, y) = xy^2/c where x = 1, 2, 3; y = 1, 2, x + y ≤ 4 , that is, (x, y) are {(1, 1),(1, 2),(2, 1),(2, 2),(3, 1)} .
(a) Find c > 0 .
(b) Find μX
(c) Find μY
(d) Find σ^2 X
(e) Find σ^2 Y
(f) Find Cov (X, Y )
(g) Find ρ , Corr (X, Y )
(h) Are X and Y independent?
Get Answers For Free
Most questions answered within 1 hours.