Question

Let (X1, Y1), . . . ,(Xn, Yn), be a random sample from a bivariate normal...

Let (X1, Y1), . . . ,(Xn, Yn), be a random sample from a bivariate normal distribution with parameters µ1, µ2, σ2 1 , σ2 2 , ρ. (Note: (X1, Y1), . . . ,(Xn, Yn) are independent). What is the joint distribution of (X ¯ , Y¯ )?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
5. Let a random sample, X1, X2, ..., Xn of size n = 10 from a...
5. Let a random sample, X1, X2, ..., Xn of size n = 10 from a distribution that is N(μ1, σ2 ) give ̄x = 4.8 and s 2+ 1 = 8.64 and a random sample, Y1, Y2, ..., Yn of size n = 10 from a distribution that is N(μ2, σ2 ) give y ̄ = 5.6 and s 2 2 = 7.88. Find a 95% confidence interval for μ1 − μ2.
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1,...
Let X1, X2, · · · , Xn (n ≥ 30) be i.i.d observations from N(µ1, σ12 ) and Y1, Y2, · · · , Yn be i.i.d observations from N(µ2, σ22 ). Also assume that X's and Y's are independent. Suppose that µ1, µ2, σ12 , σ22  are unknown. Find an approximate 95% confidence interval for (µ1µ2).
Let Y1, Y2, Y3 ,..,, Yn be a random sample from a normal distribution with mean...
Let Y1, Y2, Y3 ,..,, Yn be a random sample from a normal distribution with mean µ and standard deviation 1. Then find the MVUE( Minimum - Variance Unbiased Estimation) for the parameters: µ^2 and µ(µ+1)
Consider the bivariate random vector x = x1 x2 ∼ N2 µ1 µ2 , σ 2...
Consider the bivariate random vector x = x1 x2 ∼ N2 µ1 µ2 , σ 2 1 ρσ1σ2 ρσ1σ2 σ 2 2 1. Expand the matrix form of the density function to get the usual bivariate normal density involving σ1, σ2, ρ and exponential terms in (x1 1µ1) 2 ,(x1 1µ2) and (x2 2µ2) 2 . 2. Explain what happens in the following scenarios: (a) ρ = 0 (b) ρ = 1 (c) ρ = =1 1
Let X1, . . . , Xn and Y1, . . . , Yn be two...
Let X1, . . . , Xn and Y1, . . . , Yn be two random samples with the same mean µ and variance σ^2 . (The pdf of Xi and Yj are not specified.) Show that T = (1/2)Xbar + (1/2)Ybar is an unbiased estimator of µ. Evaluate MSE(T; µ)
Let Y1, · · · , yn be a random sample of size n from a...
Let Y1, · · · , yn be a random sample of size n from a beta distribution with parameters α = θ and β = 2. Find the sufficient statistic for θ.
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn...
Let X1, X2, ..., Xn be a random sample (of size n) from U(0,θ). Let Yn be the maximum of X1, X2, ..., Xn. (a) Give the pdf of Yn. (b) Find the mean of Yn. (c) One estimator of θ that has been proposed is Yn. You may note from your answer to part (b) that Yn is a biased estimator of θ. However, cYn is unbiased for some constant c. Determine c. (d) Find the variance of cYn,...
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the...
Let θ > 1 and let X1, X2, ..., Xn be a random sample from the distribution with probability density function f(x; θ) = 1/xlnθ , 1 < x < θ. c) Let Zn = nlnY1. Find the limiting distribution of Zn. d) Let Wn = nln( θ/Yn ). Find the limiting distribution of Wn.
Suppose that X1, X2,   , Xn and Y1, Y2,   , Yn are independent random samples from populations with...
Suppose that X1, X2,   , Xn and Y1, Y2,   , Yn are independent random samples from populations with means μ1 and μ2 and variances σ12 and σ22, respectively. It can be shown that the random variable Un = (X − Y) − (μ1 − μ2) σ12 + σ22 n satisfies the conditions of the central limit theorem and thus that the distribution function of Un converges to a standard normal distribution function as n → ∞. An experiment is designed to test...
Let y1,y2,...,yn denote a random sample from a Weibull distribution with parameters m=3 and unknown alpha:...
Let y1,y2,...,yn denote a random sample from a Weibull distribution with parameters m=3 and unknown alpha: f(y)=(3/alpha)*y^2*e^(-y^3/alpha) y>0 0 otherwise Find the MLE of alpha. Check when its a maximum
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT