3. Assume that z scores are normally distributed with a mean of 0 and a standard deviation of 1. In each case, draw a sketch to support your calculation.
a. If P( Z < a) = 0.9026, find a.
b. If P( Z > b) = 0.4656, find b.
c. If P( − d < z < d) )=0. 8740, find d .
Solution :
Using standard normal table,
a.
P(Z < a) = 0.9026
P(Z < 1.30) = 0.9026
a = 1.30
b.
P(Z > b) = 4656
1 - P(Z < b) = 0.4656
P(Z < b) = 1 - 0.4656
P(Z < 0.09) = 0.5344
b = 0.09
c.
P(-d Z d) = 0.8740
P(Z d) - P(Z -d) = 0.8740
2P(Z d) - 1 = 0.8740
2P(Z d) = 1 + 0.8740 = 1.8740
P(Z d) = 1.8740 / 2 = 0.937
P(Z 1.53) = 0.937
d = 1.53
Get Answers For Free
Most questions answered within 1 hours.