Question

If X1 and X2 are several independent random variables with distribution to the given data respectively...

If X1 and X2 are several independent random variables with distribution to the given data respectively by P(Xi = −1) = P (Xi = 1) = 1/2 , for i = 1,2, are X1 and X1X2

are independent? Justify your answer.

Homework Answers

Answer #1

Answer:-

Given that:-

If X1 and X2 are several independent random variables with distribution to the given data respectively by P(Xi = −1) = P (Xi = 1) = 1/2 , for i = 1,2, are X1 and X1X2 are independent? Justify your answer.

Given,

If X1 and X2 are independent random variables with distribution given as

Then,

= 0

= 1

= 0

= 1 x 0

= 0

= 0

= 0 - 0

From Equation (1) we get,

X1 and X2 are independent.

Thank you for your supporting. Please upvote my answer...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
You are given that X1 and X2 are two independent and identically distributed random variables with...
You are given that X1 and X2 are two independent and identically distributed random variables with a Poisson distribution with mean 2. Let Y = max{X1, X2}. Find P(Y = 1).
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let...
Let X1, X2, X3, and X4 be mutually independent random variables from the same distribution. Let S = X1 + X2 + X3 + X4. Suppose we know that S is a Chi-Square random variable with 2 degrees of freedom. What is the distribution of each of the Xi?
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2...
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2 ∼ P oisson(λ2). Find the distribution of Y = X1 + X2.s
5. Let X1, X2, . . . be independent random variables all with mean E(Xi) =...
5. Let X1, X2, . . . be independent random variables all with mean E(Xi) = 7 and variance Var(Xi) = 9. Set Yn = X1 + X2 + · · · + Xn n (n = 1, 2, 3, . . .) (a) Find E(Y2) and E(Y5). (b) Find Cov(Y2, Y5). (c) Find E (Y2 | X1). (d) How should your answers from parts (a)–(c) be modified if the numbers “2”, “5”, “7” and “9” are replaced by m,...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose that N is a random variable, independent of the Xi-s, that has a Poisson distribution with mean λ > 0. What is the expected value of X1 + X2 +···+ XN2? (A) N2 (B) λ + λ2 (C) λ2 (D) 1/λ2
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1...
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1 and θ2, use the distribution function technique to find the probability density of Y=X1+X2 when a) θ1 ≠ θ2 b) θ1 = θ2 7.7) With reference to the two random variables of Exercise 7.5, show that if θ1 = θ2 = 1, the random variable Z1=X1/(X1 + X2) has the uniform density with α=0 and β=1.                                      (I ONLY NEED TO ANSWER 7.7)
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1...
7.5) If X1 and X2 are independent random variables having exponential densities with the parameters θ1 and θ2, use the distribution function technique to find the probability density of Y=X1+X2 when a) θ1 ≠ θ2 b) θ1 = θ2 7.7) With reference to the two random variables of Exercise 7.5, show that if θ1 = θ2 = 1, the random variable Z1=X1/(X1 + X2) has the uniform density with α=0 and β=1.                                      (I ONLY NEED TO ANSWER 7.7)
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find...
If X1 and X2 are independent exponential random variables with respective parameters 1 and 2, find the distribution of Z = min{X1, X2}.
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having...
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having finite mean E[xi] and variance Var(xi). a)calculate the var (x1+x2) b)calculate the var(E[xi]) c) if n-> infinite, what is Var(E[xi])?
We have a value Y dependent on a set of independent random variables X1, X2,..., Xn...
We have a value Y dependent on a set of independent random variables X1, X2,..., Xn by the following relation: Y=X12+X22+...+Xn2. Each of X variables is distributed via the normal distribution with following parameters: 1. Mean values of all Xi = 0 2. Variances are identical and are equal to ak2 Find probability density of a random value of Y.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT