Question

You are given that X1 and X2 are two independent and identically distributed random variables with...

You are given that X1 and X2 are two independent and identically distributed random variables with a Poisson distribution with mean 2. Let Y = max{X1, X2}. Find P(Y = 1).

Homework Answers

Answer #1

Dear your satisfaction is more important.. So I provided a detailed hand written Solution.. If you are satisfied with my explanations please THUMBS UP.. Thanks in advance for your support and love...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10...
Suppose X1, X2, X3, and X4 are independent and identically distributed random variables with mean 10 and variance 16. in addition, Suppose that Y1, Y2, Y3, Y4, and Y5are independent and identically distributed random variables with mean 15 and variance 25. Suppose further that X1, X2, X3, and X4 and Y1, Y2, Y3, Y4, and Y5are independent. Find Cov[bar{X} + bar{Y} + 10, 2bar{X} - bar{Y}], where bar{X} is the sample mean of X1, X2, X3, and X4 and bar{Y}...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with...
Suppose that X1, X2, . . . , Xn are independent identically distributed random variables with variance σ2. Let Y1 = X2 +X3 , Y2 = X1 +X3 and Y3 = X1 + X2. Find the following : (in terms of σ2) (a) Var(Y1) (b) cov(Y1 , Y2 ) (c) cov(X1 , Y1 ) (d) Var[(Y1 + Y2 + Y3)/2]
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having...
Let x1, x2 x3 ....be a sequence of independent and identically distributed random variables, each having finite mean E[xi] and variance Var(xi). a)calculate the var (x1+x2) b)calculate the var(E[xi]) c) if n-> infinite, what is Var(E[xi])?
Continuous random variables X1 and X2 with joint density fX,Y(x,y) are independent and identically distributed with...
Continuous random variables X1 and X2 with joint density fX,Y(x,y) are independent and identically distributed with expected value μ. Prove that E[X1+X2] = E[X1] +E[X2].
Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the...
Let X1, X2, X3 be independent random variables, uniformly distributed on [0,1]. Let Y be the median of X1, X2, X3 (that is the middle of the three values). Find the conditional CDF of X1, given the event Y = 1/2. Under this conditional distribution, is X1 continuous? Discrete?
f X1,X2,X3,X,X5 are independent and identically distributed geometrically distributed ran dom variables with the parameter p,...
f X1,X2,X3,X,X5 are independent and identically distributed geometrically distributed ran dom variables with the parameter p, compute (a) Find c.d.f. of Ymax = max{X1,...,X5}; (b) Find p.d.f. of Ymin = min{X1,...,X5}
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose...
Let X1, X2,... be a sequence of independent random variables distributed exponentially with mean 1. Suppose that N is a random variable, independent of the Xi-s, that has a Poisson distribution with mean λ > 0. What is the expected value of X1 + X2 +···+ XN2? (A) N2 (B) λ + λ2 (C) λ2 (D) 1/λ2
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2...
Let X1 and X2 be independent random variables such that X1 ∼ P oisson(λ1) and X2 ∼ P oisson(λ2). Find the distribution of Y = X1 + X2.s
Let Y be the liner combination of the independent random variables X1 and X2 where Y...
Let Y be the liner combination of the independent random variables X1 and X2 where Y = X1 -2X2 suppose X1 is normally distributed with mean 1 and standard devation 2 also suppose the X2 is normally distributed with mean 0 also standard devation 1 find P(Y>=1) ?
7. Let X and Y be two independent and identically distributed random variables with expected value...
7. Let X and Y be two independent and identically distributed random variables with expected value 1 and variance 2.56. (i) Find a non-trivial upper bound for P(| X + Y -2 | >= 1) (ii) Now suppose that X and Y are independent and identically distributed N(1;2.56) random variables. What is P(|X+Y=2| >= 1) exactly? Briefly, state your reasoning. (iii) Why is the upper bound you obtained in Part (i) so different from the exact probability you obtained in...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT