Question

Find the value of θ that would make the formula below a true pdf. f(y) =...

Find the value of θ that would make the formula below a true pdf.

f(y) = y2/125 for y between 0 and θ

Homework Answers

Answer #1

Answer:-

Given that:-

The value of that would make the formula below a true pdf. for y between 0 and

for true pdf

we have,   

check

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose a random sample of size n is drawn from the pdf f(sub)Y(y;θ) =1/θ, 0 ≤...
Suppose a random sample of size n is drawn from the pdf f(sub)Y(y;θ) =1/θ, 0 ≤ y ≤ θ. Find a sufficient statistic for θ.
Suppose that Y1, . . . , Yn are iid random variables from the pdf f(y...
Suppose that Y1, . . . , Yn are iid random variables from the pdf f(y | θ) = 6y^5/(θ^6) I(0 ≤ y ≤ θ). (a) Prove that Y(n) = max (Y1, . . . , Yn) is sufficient for θ. (b) Find the MLE of θ
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x ≤ 1 , 0 < θ < ∞ Find the method of moments estimator of θ.
Let X1, . . . , Xn be a random sample from the following pdf: f(x|θ)=...
Let X1, . . . , Xn be a random sample from the following pdf: f(x|θ)= (x/θ)*e^(-x^2/2θ). x>0 (a) Find a sufficient statistic for θ.
Suppose X1,..., Xn are iid with pdf f(x;θ) = 2x / θ2, 0 < x ≤...
Suppose X1,..., Xn are iid with pdf f(x;θ) = 2x / θ2, 0 < x ≤ θ. Find I(θ) and the Cramér-Rao lower bound for the variance of an unbiased estimator for θ.
Suppose a random sample of size n was drawn from a distribution with pdf f(y,a)=(1/a )...
Suppose a random sample of size n was drawn from a distribution with pdf f(y,a)=(1/a ) exp(-y/a) where y is between y>0 and a>0. Write down the central limit theorem for the standardized sample mean in terms of a and find a formula for a 95% confidence interval ..(hint: this is the exponential distribution with mean a)
Let be the problem with initial value f(t,y) = yt3   , y(0)=1 Write the general formula...
Let be the problem with initial value f(t,y) = yt3   , y(0)=1 Write the general formula for Picard iterations. Then start with the function y0 (t) = y (0) = 1 and calculate the iterations y1 (t) and y2 (t).
Find f. f ''(θ) = sin(θ) + cos(θ),    f(0) = 4,    f '(0) = 3 f(θ) =
Find f. f ''(θ) = sin(θ) + cos(θ),    f(0) = 4,    f '(0) = 3 f(θ) =
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y)...
1. Let (X,Y ) be a pair of random variables with joint pdf given by f(x,y) = 1(0 < x < 1,0 < y < 1). (a) Find P(X + Y ≤ 1). (b) Find P(|X −Y|≤ 1/2). (c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R. (d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY of Y . (f) Find the conditional pdf f(x|y) of X|Y = y for 0...
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) =...
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) = θx^(θ−1) , 0 < x < 1, θ > 0. Is there an unbiased estimator of some function γ(θ), whose variance attains the Cramer-Rao lower bound?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT