Question

Suppose X1,..., Xn are iid with pdf f(x;θ) = 2x / θ2, 0 < x ≤...

Suppose X1,..., Xn are iid with pdf f(x;θ) = 2x / θ2, 0 < x ≤ θ. Find I(θ) and the Cramér-Rao lower bound for the variance of an unbiased estimator for θ.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) =...
Let X1, X2, . . . , Xn be iid random variables with pdf f(x|θ) = θx^(θ−1) , 0 < x < 1, θ > 0. Is there an unbiased estimator of some function γ(θ), whose variance attains the Cramer-Rao lower bound?
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. I have the pdf (b) Create an unbiased estimator for θ based on Xmin. Compute the variance of the resulting estimator. (c) Perform a Monte Carlo simulation of N= 10,0000 samples of your unbiased estimator from part (b) using θ = 2 and n = 100 to validate your answer. Include a histogram of the samples. (d) Which is more efficient: your estimator from part (b) or the...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x...
Let X1,...,Xn be a random sample from the pdf f(x;θ) = θx^(θ−1) , 0 ≤ x ≤ 1 , 0 < θ < ∞ Find the method of moments estimator of θ.
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. (b) Create an unbiased...
Let X1,...,Xn be iid exp(θ) rvs. (a) Compute the pdf of Xmin. (b) Create an unbiased estimator for θ based on Xmin. Compute the variance of the resulting estimator. (c) Perform a Monte Carlo simulation of N= 10,0000 samples of your unbiased estimator from part (b) using θ = 2 and n = 100 to validate your answer. Include a histogram of the samples. (d) Which is more efficient: your estimator from part (b) or the MLE for θ? (e)...
Let X1,…, Xn be a sample of iid random variables with pdf f (x; ?) =...
Let X1,…, Xn be a sample of iid random variables with pdf f (x; ?) = 3x2 /(?3) on S = (0, ?) with Θ = ℝ+. Determine i) a sufficient statistic for ?. ii) F(x). iii) f(n)(x)
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean...
Let X1, X2, . . . , Xn be iid exponential random variables with unknown mean β. (1) Find the maximum likelihood estimator of β. (2) Determine whether the maximum likelihood estimator is unbiased for β. (3) Find the mean squared error of the maximum likelihood estimator of β. (4) Find the Cramer-Rao lower bound for the variances of unbiased estimators of β. (5) What is the UMVUE (uniformly minimum variance unbiased estimator) of β? What is your reason? (6)...
Let X1,…, Xn be a sample of iid random variables with pdf f (x ∶ ?)...
Let X1,…, Xn be a sample of iid random variables with pdf f (x ∶ ?) = 1/? for x ∈ {1, 2,…, ?} and Θ = ℕ. Determine the MLE of ?.
Let X1, X2, …, Xn be iid with pdf ?(?|?) = ? −(?−?)? −? −(?−?) ,...
Let X1, X2, …, Xn be iid with pdf ?(?|?) = ? −(?−?)? −? −(?−?) , −∞ < ? < ∞. Find a C.S.S of θ
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0....
The random variable X is distributed with pdf fX(x, θ) = c*x*exp(-(x/θ)2), where x>0 and θ>0. (Please note the equation includes the term -(x/θ)2 ) a) What is the constant c? b) We consider parameter θ is a number. What is MLE and MOM of θ? Assume you have an i.i.d. sample. Is MOM unbiased? c) Please calculate the Cramer-Rao Lower Bound (CRLB). Compare the variance of MOM with Crameer-Rao Lower Bound (CRLB).
Suppose the random variable X follows the Poisson P(m) PDF, and that you have a random...
Suppose the random variable X follows the Poisson P(m) PDF, and that you have a random sample X1, X2,...,Xn from it. (a)What is the Cramer-Rao Lower Bound on the variance of any unbiased estimator of the parameter m? (b) What is the maximum likelihood estimator ofm?(c) Does the variance of the MLE achieve the CRLB for all n?