Question

A charity is conducting a raffle to raise money. Tickets cost $2 each and it is...

A charity is conducting a raffle to raise money. Tickets cost $2 each and it is expected that the charity will sell 8,000 tickets. The winning raffle tickets are to be drawn at random and monetary prizes awarded as follows: 1 prize of $500, 5 prizes of $100, and 30 prizes of $5.What is expected value and create a probability distribution for this?

Homework Answers

Answer #1

Let X be the winning amount in raffle tickets.

Probability to get the prize of $500 = P(X = 500) = 1/8000

Probability to get the prize of $100 = P(X = 100) = 5/8000

Probability to get the prize of $5 = P(X = 5) = 30/8000

Probability of no prize = P(X = 0) = 1 - (1/8000 + 5/8000 + 30/8000) = 7964 / 8000

The probability distribution of X is,

X P(X)
0 7964 / 8000
5 30/8000
100 5/8000
500 1/8000

Expected value = E(X) = 0 * (7964 / 8000) + 5 * (30/8000) + 100 * (5/8000) + 500 * (1/8000)

= 0.14

Expected gain of charity from each ticket = 2 - 0.14 = 1.86

Total Expected gain of charity = 1.86 * 8,000 = $14880

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Five thousand tickets are sold at​ $1 each for a charity raffle. Tickets are to be...
Five thousand tickets are sold at​ $1 each for a charity raffle. Tickets are to be drawn at random and monetary prizes awarded as​ follows: 1 prize of ​$700 ​, 3 prizes of ​$300 ​, 5 prizes of ​$50 ​, and 20 prizes of​ $5. What is the expected value of this raffle if you buy 1​ ticket?
1. One thousand tickets are sold at $1 each for a charity raffle. Tickets are to...
1. One thousand tickets are sold at $1 each for a charity raffle. Tickets are to be drawn at random and cash prizes are to be awarded as follows: 1 prize of $100, 3 prizes of $50, and 5 prizes of $20. What is the expected value of this raffle if you buy 1 ticket? 2. Suppose 10% of the high school students are late for school.What is the probability that exactly 1 out of 5 students will be late...
One thousand tickets are sold at $1 each for a charity raffle. Tickets are to be...
One thousand tickets are sold at $1 each for a charity raffle. Tickets are to be drawn at random and cash prizes are to be awarded as follows: 1 prize of $100, 3 prizes of $50, and 5 prizes of $20. What is the expected value of this raffle if you buy 1 ticket? Now suppose some benefactor agrees to give every player $1000, regardless of the outcome of the raffle. What is the expected value of the game? What...
9. A county fair is running a raffle. Tickets for the raffle cost $1. If the...
9. A county fair is running a raffle. Tickets for the raffle cost $1. If the raffle has a grand prize worth $50, five runner up prizes worth $30, and fifty consolation prizes worth $5. Suppose you purchase a ticket and the fair sells 600 tickets in total. A.Create a probability distribution for the value of the ticket purchased. B .Find and interpret the mean value of the ticket. C. Find the standard deviation for the value of the ticket
A charity raffle sells 2000 tickets for $1 each. Prizes are awarded of one $100, four...
A charity raffle sells 2000 tickets for $1 each. Prizes are awarded of one $100, four $50, and eight $25. Find the expected value if you purchase 1 ticket. Your expected value should end up negative since there are way more chances to not win than to win one of the prizes. Expected value is calculated by multiplying every possible outcome by its probability and then adding those products. Let's break this down. a) In this case there are 2000...
At a raffle, 1500 tickets are sold at $2 each for four prizes of $500, $250,...
At a raffle, 1500 tickets are sold at $2 each for four prizes of $500, $250, $150, and $75. Assume all 4 prizes are drawn at the same time (so there is no change in probability between selections of the prizes), and assume all 1500 tickets have an equal chance of being selected. A. Create the probability model for money won from the purchase of one ticket. B. Find and interpret the expected value for one play. C. Find and...
The student council is hosting a drawing to raise money for scholarships. They are selling tickets...
The student council is hosting a drawing to raise money for scholarships. They are selling tickets for $5 each and will sell 800 tickets. There is one $1,000 grand prize, three $200 second prizes, and twelve $30 third prizes. You just bought a ticket. Find the expected value for your profit. Round to the nearest cent.
The student council is hosting a drawing to raise money for scholarships. They are selling tickets...
The student council is hosting a drawing to raise money for scholarships. They are selling tickets for $8 each and will sell 600 tickets. There is one $1,000 grand prize, two $500 second prizes, and fifteen $10 third prizes. You just bought a ticket. Find the expected value for your profit. Round to the nearest cent.
The student council is hosting a drawing to raise money for scholarships. They are selling tickets...
The student council is hosting a drawing to raise money for scholarships. They are selling tickets for $6 each and will sell 500 tickets. There is one $3,000 grand prize, three $200 second prizes, and thirteen $40 third prizes. You just bought a ticket. Find the expected value for your profit. Round to the nearest cent.
You are participating in a raffle in which there will be 2000 tickets sold. Each ticket...
You are participating in a raffle in which there will be 2000 tickets sold. Each ticket costs 5 dollars. There is 1 first prize, a $100 gift certificate. 2 second prize $50 gift certificates. And 5 third prizes of $25. Use this information to answer the following questions. Show your work. a. What is the expected value of a single raffle ticket? b. According to the mathematics, should you participate in the raffle? c. If you purchased 20 tickets, how...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT