Question

simple random sample of size n=400 individuals who are currently employed is asked if they work...

simple random sample of size n=400 individuals who are currently employed is asked if they work at home at least once per week. Of the 400 employed individuals​ surveyed,44 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week.

Homework Answers

Answer #1

Solution :

Given that,

n = 400

x = 44

Point estimate = sample proportion = = x / n = 0.11

1 - = 0.89

At 99% confidence level the z is ,

= 1 - 99% = 1 - 0.99 = 0.01

/ 2 = 0.01 / 2 = 0.005

Z/2 = Z0.005 = 2.576

Margin of error = E = Z / 2 * (( * (1 - )) / n)

= 2.576 * (((0.11 * 0.89) / 400)

= 0.040

A 99% confidence interval for population proportion p is ,

- E < p < + E

0.11 - 0.040 < p < 0.11 +0.040

0.070 < p < 0.150

The 99% confidence interval is : (0.070 , 0.150)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple random sample of size n=400 individuals who are currently employed is asked if they...
A simple random sample of size n=400 individuals who are currently employed is asked if they work at home at least once per week. Of the 400 employed individuals​ surveyed, 38 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week.
A simple random sample of size n equals 400 individuals who are currently employed is asked...
A simple random sample of size n equals 400 individuals who are currently employed is asked if they work at home at least once per week. Of the 400 employed individuals​ surveyed 40 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week.
A simple random sample of size n equals 400 individuals who are currently employed is asked...
A simple random sample of size n equals 400 individuals who are currently employed is asked if they work at home at least once per week. Of the 400 employed individuals​ surveyed, 34 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week. The lower bound is
A simple random sample of size n=350 individuals who are currently employed is asked if they...
A simple random sample of size n=350 individuals who are currently employed is asked if they work at home at least once per week. Of the 350 employed individuals​ surveyed,38 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week.
A simple random sample of size n=250 individuals who are currently employed is asked if they...
A simple random sample of size n=250 individuals who are currently employed is asked if they work at home at least once per week. Of the 250 employed individuals​ surveyed, 31 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week. (a) The lower bound is __ and the upper bound is __.
A simple random sample of size n equals 350 individuals who are currently employed is asked...
A simple random sample of size n equals 350 individuals who are currently employed is asked if they work at home at least once per week. Of the 350 employed individuals​ surveyed, 36 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week.
A simple random sample of size n equals n=200 individuals who are currently employed is asked...
A simple random sample of size n equals n=200 individuals who are currently employed is asked if they work at home at least once per week. Of the 200 employed individuals​ surveyed,40 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week. Find Lower and Upper Bound
A simple random sample of size n equals 350 individuals who are currently employed is asked...
A simple random sample of size n equals 350 individuals who are currently employed is asked if they work at home at least once per week. Of the 350 employed individuals​ surveyed, 32 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week. The lower bound is nothing. ​(Round to three decimal places as​ needed.)
A simple random sample of size n equals n=300 individuals who are currently employed is asked...
A simple random sample of size n equals n=300 individuals who are currently employed is asked if they work at home at least once per week. Of the 300 employed individuals​ surveyed, 37 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week. Find lower and upper bound. Round to three decimal places.
What is the lower and upper bound? A simple random sample of size n equals 350...
What is the lower and upper bound? A simple random sample of size n equals 350 individuals who are currently employed is asked if they work at home at least once per week. Of the 350 employed individuals​ surveyed, 28 responded that they did work at home at least once per week. Construct a​ 99% confidence interval for the population proportion of employed individuals who work at home at least once per week.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT