Question

Are numbers real? Why or why not?

Are numbers real? Why or why not?

Homework Answers

Answer #1

If you think of REAL in terms of what can be observed, touched, or measured, then numbers (all kinds of numbers) are clearly not real as they don’t phyiscally exist anywhere.

Numbers are concepts, they are our tools that helps to understand useful things about the world. It gives an object a definite value. They are emensely useful tools and versatile enough that we have each and every reason to believe that they can be used to describe any pattern or equation that we can understand regardless of whether that pattern is ever realized in this mortal world.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find a bijection between set of infinite subsets of natural numbers and real numbers. Find a...
Find a bijection between set of infinite subsets of natural numbers and real numbers. Find a bijection between set of finite subsets of real numbers and real numbers. Find a bijection between set of countable subsets of real numbers and real numbers.
For ƒ∶(All Real Numbers) →(All Real Numbers), Let ƒ(x) = x3 Is this an injunctive or...
For ƒ∶(All Real Numbers) →(All Real Numbers), Let ƒ(x) = x3 Is this an injunctive or surjective function or both (a bijection)? Show your work.
Prove that the set of real numbers has the same cardinality as: (a) The set of...
Prove that the set of real numbers has the same cardinality as: (a) The set of positive real numbers. (b) The set of nonnegative real numbers.
Prove that the set of real numbers has the same cardinality as: (a) The set of...
Prove that the set of real numbers has the same cardinality as: (a) The set of positive real numbers. (b) The set of non-negative real numbers.
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
Define f: R (all positive real numbers) -> R (all positive real numbers) by f(x)= sqrt(x^3+2)...
Define f: R (all positive real numbers) -> R (all positive real numbers) by f(x)= sqrt(x^3+2) prove that f is bijective
12. For any two real numbers ?, ?, ????? ?ℎ?? ?? ≤ |??|
12. For any two real numbers ?, ?, ????? ?ℎ?? ?? ≤ |??|
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as...
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as the real numbers between 0 and pi/2. (Hint: Find a simple bijection from one set to the other.) b) Show that the real numbers between 0 and pi/2 have the same cardinality as all nonnegative real numbers. (Hint: What is a function whose graph goes from 0 to positive infinity as x goes from 0 to pi/2?) c) Use parts a and b to...
Real Topology: let A={1/n : n is natural} be a subset of the real numbers. Is...
Real Topology: let A={1/n : n is natural} be a subset of the real numbers. Is A open closed, or neither? Justify your answer.
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z...
Consider the relation on the real numbers R. a ~ b if (a−b) ∈ Z. (Z is the whole integers.) 1) Give two real numbers that are in the same equivalence class. 2) Give two real numbers that are not in the same equivalence class. 3) Prove that this relation is an equivalence relation.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT