Question

For ƒ∶(All Real Numbers) →(All Real Numbers), Let ƒ(x) = x3 Is this an injunctive or...

For ƒ∶(All Real Numbers) →(All Real Numbers),

Let ƒ(x) = x3

Is this an injunctive or surjective function or both (a bijection)? Show your work.

Homework Answers

Answer #1

f:R→R, is given in the question.

Take x,y∈R, then to show injectivity, we need to show that: if f(x)=f(y) then we have x=y. We can show that x3=y3 ⟹ x=y .

Take y∈R, then to show surjectivity, we need to show that: there exists some x∈R such that y=f(x) We can show that ∀y∈R ∃x∈R: y=x3.

Bijectivity is true only when both injectivity and surjectivity are true.

Since, here both injectivity and surjectivity are true, so this is a surjective function.

PLEASE LIKE THE SOLUTION :))

IF YOU HAVE ANY DOUBTS PLEASE MENTION IN THE COMMENT

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let x1, x2, x3 be real numbers. The mean, x of these three numbers is defined...
Let x1, x2, x3 be real numbers. The mean, x of these three numbers is defined to be x = (x1 + x2 + x3)/3 . Prove that there exists xi with 1 ≤ i ≤ 3 such that xi ≤ x.
Assumptions: The formal definition of the limit of a function is as follows: Let ƒ :...
Assumptions: The formal definition of the limit of a function is as follows: Let ƒ : D →R with x0 being an accumulation point of D. Then ƒ has a limit L at x0 if for each ∈ > 0 there is a δ > 0 that if 0 < |x – x0| < δ and x ∈ D, then |ƒ(x) – L| < ∈. Let L = 4P + Q. when P = 6 and Q = 24 Define...
Let f be a function differentiable on R (all real numbers). Let y1 and y2 be...
Let f be a function differentiable on R (all real numbers). Let y1 and y2 be pair of numbers (y1 < y2) with the property f(y1) = y2 and f(y2) = y1. Show there exists a num where the value of f' is -1. Name all theroms that you use and explain each step.
Let f(x) be a function that is continuous for all real numbers and assume all the...
Let f(x) be a function that is continuous for all real numbers and assume all the intercepts of f, f' , and f” are given below. Use the information to a) summarize any and all asymptotes, critical numbers, local mins/maxs, PIPs, and inflection points, b) then graph y = f(x) labeling all the pertinent features from part a. f(0) = 1, f(2) = 0, f(4) = 1 f ' (2) = 0, f' (x) < 0 on (−∞, 2), and...
For each problem, say if the given statement is True or False. Give a short justification...
For each problem, say if the given statement is True or False. Give a short justification if needed. Let f : R + → R + be a function from the positive real numbers to the positive real numbers, such that f(x) = x for all positive irrational x, and f(x) = 2x for all positive rational x. a) f is surjective (i.e. f is onto). b) f is injective (i.e. f is one-to-one). c) f is a bijection.
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as...
15.) a) Show that the real numbers between 0 and 1 have the same cardinality as the real numbers between 0 and pi/2. (Hint: Find a simple bijection from one set to the other.) b) Show that the real numbers between 0 and pi/2 have the same cardinality as all nonnegative real numbers. (Hint: What is a function whose graph goes from 0 to positive infinity as x goes from 0 to pi/2?) c) Use parts a and b to...
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|)...
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|) is also a bijection (i.e. g: (-d,d)->R) Finally consider h(x)= x + (a+b)/2 and show it is a bijection where h: (-d,d)->(a,b) Conclude: R~(a,b)
for the function g(x) = 1/x for all nonzero real numbers X. Is the cardinality the...
for the function g(x) = 1/x for all nonzero real numbers X. Is the cardinality the same for all even numbers as it is for all integers
What two nonnegative real numbers with a sum of 36 have the largest possible​ product? Let...
What two nonnegative real numbers with a sum of 36 have the largest possible​ product? Let x be one of the numbers and let P be the product of the two numbers. Write the objective function in terms of x. What is The interval of interest of the objective function ​(Simplify your answers)
Let X, Y and Z be sets. Let f : X → Y and g :...
Let X, Y and Z be sets. Let f : X → Y and g : Y → Z functions. (a) (3 Pts.) Show that if g ◦ f is an injective function, then f is an injective function. (b) (2 Pts.) Find examples of sets X, Y and Z and functions f : X → Y and g : Y → Z such that g ◦ f is injective but g is not injective. (c) (3 Pts.) Show that...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT