Question

15.) a) Show that the real numbers between 0 and 1 have the same cardinality as...

15.)

a) Show that the real numbers between 0 and 1 have the same cardinality as the real numbers between 0 and pi/2. (Hint: Find a simple bijection from one set to the other.)

b) Show that the real numbers between 0 and pi/2 have the same cardinality as all nonnegative real numbers. (Hint: What is a function whose graph goes from 0 to positive infinity as x goes from 0 to pi/2?)

c) Use parts a and b to show that the real numbers between 0 and 1 have the same cardinality as the nonnegative real numbers.

d) Use part c and a previous result to show that the nonnegative real numbers aren't countable.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S be the set of real numbers between 0 and 1, inclusive; i.e. S =...
Let S be the set of real numbers between 0 and 1, inclusive; i.e. S = [0, 1]. Let T be the set of real numbers between 1 and 3 inclusive (i.e. T = [1, 3]). Show that S and T have the same cardinality.
14.) In Cantor's diagonalization, we construct a number x between 0 and 1 that's not on...
14.) In Cantor's diagonalization, we construct a number x between 0 and 1 that's not on the supposed list of real numbers between 0 and 1. Recall, to construct x we make x's ith digit (after the decimal point) equal to 1 if the corresponding digit of the ith number on the list is even and we make x's ith digit 0 otherwise. a) Suppose the list happens to start with the numbers 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 20.2/3,...
Problem 3 Countable and Uncountable Sets (a) Show that there are uncountably infinite many real numbers...
Problem 3 Countable and Uncountable Sets (a) Show that there are uncountably infinite many real numbers in the interval (0, 1). (Hint: Prove this by contradiction. Specifically, (i) assume that there are countably infinite real numbers in (0, 1) and denote them as x1, x2, x3, · · · ; (ii) express each real number x1 between 0 and 1 in decimal expansion; (iii) construct a number y whose digits are either 1 or 2. Can you find a way...
Let p and q be two real numbers with p > 0. Show that the equation...
Let p and q be two real numbers with p > 0. Show that the equation x^3 + px +q= 0 has exactly one real solution. (Hint: Show that f'(x) is not 0 for any real x and then use Rolle's theorem to prove the statement by contradiction)
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|)...
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|) is also a bijection (i.e. g: (-d,d)->R) Finally consider h(x)= x + (a+b)/2 and show it is a bijection where h: (-d,d)->(a,b) Conclude: R~(a,b)
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then...
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then the cubic equation x^3 + ax^2 + bx + c = 0 has precisely one real root
1. Let A and B be sets. The set B is of at least the same...
1. Let A and B be sets. The set B is of at least the same size as the set A if and only if (mark all correct answers) there is a bijection from A to B there is a one-to-one function from A to B there is a one-to-one function from B to A there is an onto function from B to A A is a proper subset of B 2. Which of these sets are countable? (mark all...
use the pigeonhole principle to show that if one picks nine numbers between 2 and 22...
use the pigeonhole principle to show that if one picks nine numbers between 2 and 22 at least two of the numbers chosen must have common divisor d>2.. hint: how many primes are there between 2 and22.?
4. Show your output that only even numbers from 80 to 115 get printed. Hint. You...
4. Show your output that only even numbers from 80 to 115 get printed. Hint. You can use modulo (%%) in Chapter 1. Even numbers have the remainder 0 after division of the number by 2. You start with the following code for a) and b): number <- 80 a) Use repeat loop b) Use while loop You start with the following code for c): number <- seq(from = 80, to = 115) c) [ Use for loop
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT