Question

15.) a) Show that the real numbers between 0 and 1 have the same cardinality as...

15.)

a) Show that the real numbers between 0 and 1 have the same cardinality as the real numbers between 0 and pi/2. (Hint: Find a simple bijection from one set to the other.)

b) Show that the real numbers between 0 and pi/2 have the same cardinality as all nonnegative real numbers. (Hint: What is a function whose graph goes from 0 to positive infinity as x goes from 0 to pi/2?)

c) Use parts a and b to show that the real numbers between 0 and 1 have the same cardinality as the nonnegative real numbers.

d) Use part c and a previous result to show that the nonnegative real numbers aren't countable.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let S be the set of real numbers between 0 and 1, inclusive; i.e. S =...
Let S be the set of real numbers between 0 and 1, inclusive; i.e. S = [0, 1]. Let T be the set of real numbers between 1 and 3 inclusive (i.e. T = [1, 3]). Show that S and T have the same cardinality.
14.) In Cantor's diagonalization, we construct a number x between 0 and 1 that's not on...
14.) In Cantor's diagonalization, we construct a number x between 0 and 1 that's not on the supposed list of real numbers between 0 and 1. Recall, to construct x we make x's ith digit (after the decimal point) equal to 1 if the corresponding digit of the ith number on the list is even and we make x's ith digit 0 otherwise. a) Suppose the list happens to start with the numbers 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 20.2/3,...
Problem 3 Countable and Uncountable Sets (a) Show that there are uncountably infinite many real numbers...
Problem 3 Countable and Uncountable Sets (a) Show that there are uncountably infinite many real numbers in the interval (0, 1). (Hint: Prove this by contradiction. Specifically, (i) assume that there are countably infinite real numbers in (0, 1) and denote them as x1, x2, x3, · · · ; (ii) express each real number x1 between 0 and 1 in decimal expansion; (iii) construct a number y whose digits are either 1 or 2. Can you find a way...
Let p and q be two real numbers with p > 0. Show that the equation...
Let p and q be two real numbers with p > 0. Show that the equation x^3 + px +q= 0 has exactly one real solution. (Hint: Show that f'(x) is not 0 for any real x and then use Rolle's theorem to prove the statement by contradiction)
5. Suppose A is an n × n matrix, whose entries are all real numbers, that...
5. Suppose A is an n × n matrix, whose entries are all real numbers, that has n distinct real eigenvalues. Explain why R n has a basis consisting of eigenvectors of A. Hint: use the “eigenspaces are independent” lemma stated in class. 6. Unlike the previous problem, let A be a 2 × 2 matrix, whose entries are all real numbers, with only 1 eigenvalue λ. (Note: λ must be real, but don’t worry about why this is true)....
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|)...
Show (-1,1)~R (where R= set of real numbers) by f(x)= x/(1-|x|) Use this to show g(x)=x/(d-|x|) is also a bijection (i.e. g: (-d,d)->R) Finally consider h(x)= x + (a+b)/2 and show it is a bijection where h: (-d,d)->(a,b) Conclude: R~(a,b)
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then...
Show that if a, b, c are real numbers such that b > (1/3)a^2 , then the cubic equation x^3 + ax^2 + bx + c = 0 has precisely one real root
1. Let A and B be sets. The set B is of at least the same...
1. Let A and B be sets. The set B is of at least the same size as the set A if and only if (mark all correct answers) there is a bijection from A to B there is a one-to-one function from A to B there is a one-to-one function from B to A there is an onto function from B to A A is a proper subset of B 2. Which of these sets are countable? (mark all...
use the pigeonhole principle to show that if one picks nine numbers between 2 and 22...
use the pigeonhole principle to show that if one picks nine numbers between 2 and 22 at least two of the numbers chosen must have common divisor d>2.. hint: how many primes are there between 2 and22.?
Prove or disprove the following statements. Remember to disprove a statement you have to show that...
Prove or disprove the following statements. Remember to disprove a statement you have to show that the statement is false. Equivalently, you can prove that the negation of the statement is true. Clearly state it, if a statement is True or False. In your proof, you can use ”obvious facts” and simple theorems that we have proved previously in lecture. (a) For all real numbers x and y, “if x and y are irrational, then x+y is irrational”. (b) For...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT