Choose the best answer.
Find and interpret a 95% confidence interval for a population
mean μ for these values:
A. n = 36, x̄ = 13.1,
s2 = 3.42
B. n = 64, x̄ = 2.73, s2 =
.1047
Select one:
A. 13.1 ± 0.1007
B. 2.73 ± 0.0099
A. 13.1 ± 0.1862
B. 2.73 ± 0.0032
A. 13.1 ± 1.1172
B. 2.73 ± 0.0257
A. 13.1 ± 0.6041
B. 2.73 ± 0.0793
A.
n=36
xbar= 13.1
variance= 3.42
Thus, sd= sqrt(variance)
= sqrt(3.42)
= 1.849324
At 95% confidence, the Z value is 1.96. ( + and - )
Thus, confidence interval
= xbar - Z *s / sqrt(n) , xbar + Z *s / sqrt(n)
= 13.1 - 1.96 * 1.849324 / sqrt(36) , 13.1 + 1.96 * 1.849324 / sqrt(36)
= 13.1 - 1.96 * 0.3082207 , 13.1 + 1.96 * 0.3082207
= 13.1 - 0.6041126 , 13.1 + 0.6041126
= 12.49589, 13.70411
B.
n=64
xbar= 2.73
variance= 0.1047
Thus, sd= sqrt(variance)
= sqrt(0.1047)
= 0.3235738
At 95% confidence, the Z value is 1.96. ( + and - )
Thus, confidence interval
= xbar - Z *s / sqrt(n) , xbar + Z *s / sqrt(n)
= 2.73 - 1.96 * 0.3235738 / sqrt(64) , 2.73 + 1.96 * 0.3235738 / sqrt(64)
= 2.73 - 1.96 * 0.04044673 , 2.73 + 1.96 * 0.04044673
= 2.73 - 0.07927559 , 2.73 + 0.07927559
= 2.650724, 2.809276
Thus, the correct answer is the last option.
Get Answers For Free
Most questions answered within 1 hours.