Question

Let X and Y be discrete random variables, their joint pmf is given as Px,y = ?(? + ? + 2)/(B + 2) for 0 ≤ X < 3, 0 ≤ Y < 3 Where B=2.

a) Find the value of ?

b) Find the marginal pmf of ? and ?

c) Find conditional pmf of ? given ? = 2

Answer #1

SOLUTION REQUIRED WITH COMPLETE STEPS
Let X and Y be discrete random variables, their joint pmf is
given as Px,y = ?(? + ?)/(B + 1) for 0 < X ≤ 3, 0 < Y ≤ 3
(Where B=5)
a) Find the value of ?
b) Find the marginal pmf of ? and ?
c) Find conditional pmf of ? given ? = 2

SOLUTION REQUIRED WITH COMPLETE STEPS
Let X and Y be discrete random variables, their joint pmf is
given as Px,y = ?(? + ? + 1)/(B + 1) for 0 ≤ X < 3, 0 ≤ Y < 3
(Where B=7)
a) Find the value of ?
b) Find the marginal pmf of ? and ?
c) Find conditional pmf of ? given ? = 1

SOLUTION REQUIRED WITH COMPLETE STEPS
Let X and Y be discrete random variables, their joint pmf is
given as Px,y = ?(? + ? − 2)/(B + 1) for 1 < X ≤ 4, 1 < Y ≤ 4
(Where B=2)
a) Find the value of ?
b) Find the marginal pmf of ? and ?
c) Find conditional pmf of ? given ? = 3

Let X and Y be discrete random variables, their joint pmf is
given as ?(x,y)= ?(? + ? − 2)/(B + 1) for 1 < X ≤ 4, 1 < Y ≤
4 Where B is the last digit of your registration number ( B=3) a)
Find the value of ? b) Find the marginal pmf of ? and ? c) Find
conditional pmf of ? given ? = 3

Find the joint discrete random variable x and y,their joint
probability mass function is given by Px,y(x,y)={k(x+y)
x=-2,0,+2,y=-1,0,+1
0 Otherwise }
2.1 determine the value of constant k,such that this will be
proper pmf?
2.2 find the marginal pmf’s,Px(x) and Py(y)?
2.3 obtain the expected values of random variables X and Y?
2.4 calculate the variances of X and Y?

Let X, Y be two random variables with a joint pmf
f(x,y)=(x+y)/12 x=1,2 and y=1,2
zero elsewhere
a)Are X and Y discrete or continuous random variables?
b)Construct and joint probability distribution table by writing
these probabilities in a rectangular array, recording each marginal
pmf in the "margins"
c)Determine if X and Y are Independent variables
d)Find P(X>Y)
e)Compute E(X), E(Y), E(X^2) and E(XY)
f)Compute var(X)
g) Compute cov(X,Y)

1. Let (X,Y ) be a pair of random variables with joint pdf given
by f(x,y) = 1(0 < x < 1,0 < y < 1).
(a) Find P(X + Y ≤ 1).
(b) Find P(|X −Y|≤ 1/2).
(c) Find the joint cdf F(x,y) of (X,Y ) for all (x,y) ∈R×R.
(d) Find the marginal pdf fX of X. (e) Find the marginal pdf fY
of Y .
(f) Find the conditional pdf f(x|y) of X|Y = y for 0...

Let X and Y be two continuous random variables with joint
probability density function
f(x,y) =
6x 0<y<1, 0<x<y,
0 otherwise.
a) Find the marginal density of Y .
b) Are X and Y independent?
c) Find the conditional density of X given Y = 1 /2

The random variables, X and Y , have the joint pmf
f(x,y)=c(x+2y), x=1,2 y=1,2 and zero otherwise.
1. Find the constant, c, such that f(x,y) is a valid pmf.
2. Find the marginal distributions for X and Y .
3. Find the marginal means for both random variables.
4. Find the marginal variances for both random variables.
5. Find the correlation of X and Y .
6. Are the two variables independent? Justify.

Let LaTeX: X,YX , Y be two discrete random variables that have
the following joint distribution:
x = 0 1
y = -1 0.18 0.12
0 ? 0.20
1 0.12 0.08
(a) Determine the following probabilities:
LaTeX: P(X=0, Y=0) P ( X = 0 , Y = 0 ), LaTeX: P(X\le 0,Y\le 0)P
( X ≤ 0 , Y ≤ 0 )
(b) Find the marginal distribution of LaTeX: YY.
(c) What is the conditional distribution of LaTeX: XX given...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 13 minutes ago

asked 19 minutes ago

asked 19 minutes ago

asked 35 minutes ago

asked 42 minutes ago

asked 43 minutes ago

asked 47 minutes ago

asked 48 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago