Question

Suppose Y ∼ Binomial(6, 0.5) (a) Calculate P(Y ≥ 3). (b) Calculate μY (c) Calculate P(Y...

Suppose Y ∼ Binomial(6, 0.5)

(a) Calculate P(Y ≥ 3).

(b) Calculate μY

(c) Calculate P(YμY )

Homework Answers

Answer #1

--------------------------------------------------------------------------------------------------

--------------------------------------------------------------------------------------------------

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose f(x,y)=(1/8)(6-x-y) for 0<x<2 and 2<y<4. Find p(0.5 < X < 1) and p(2 < Y...
Suppose f(x,y)=(1/8)(6-x-y) for 0<x<2 and 2<y<4. Find p(0.5 < X < 1) and p(2 < Y < 3) Find p(Y<3|X=1) Find p(Y<3|0.5<X<1)
Suppose that a random variable X has a binomial distribution with n=2, p=0.5. Find the mean...
Suppose that a random variable X has a binomial distribution with n=2, p=0.5. Find the mean and variance of Y = X2
Suppose X is binomial random variable with n = 18 and p = 0.5. Since np...
Suppose X is binomial random variable with n = 18 and p = 0.5. Since np ≥ 5 and n(1−p) ≥ 5, please use binomial distribution to find the exact probabilities and their normal approximations. In case you don’t remember the formula, for a binomial random variable X ∼ Binomial(n, p), P(X = x) = n! x!(n−x)!p x (1 − p) n−x . (a) P(X = 14). (b) P(X ≥ 1).
1)Calculate the MGF of X^2+Y, if X follows a Bernoulli(0.5), and Y follows a Binomial(3,0.5), and...
1)Calculate the MGF of X^2+Y, if X follows a Bernoulli(0.5), and Y follows a Binomial(3,0.5), and if X and Y are independent. 2) Let X follow PDF f(x):= exp(-x^2/2)/√(2π), for -∞<x<∞. The corresponding Cumulative Distribution Function is denoted by F(x)=P(X<=x). If Y is independent with X, follows the same distribution as X, what is the probability that the minimum of X and Y will be positive.
Suppose that Y has a binomial distribution with p = 0.60. (a) Use technology and the...
Suppose that Y has a binomial distribution with p = 0.60. (a) Use technology and the normal approximation to the binomial distribution to compute the exact and approximate values of P(Y ≤ μ + 1) for n = 5, 10, 15, and 20. For each sample size, pay attention to the shapes of the binomial histograms and to how close the approximations are to the exact binomial probabilities. (Round your answers to five decimal places.) n = 5 exact value...
If random variable X has a binomial distribution with n =8 and P(success) = p =0.5,...
If random variable X has a binomial distribution with n =8 and P(success) = p =0.5, find the probability that X is at most 3. (That is, find P(X ≤ 3))
if X is a binomial random variable with n = 20, and p = 0.5, then...
if X is a binomial random variable with n = 20, and p = 0.5, then Select one: a. P(X = 20) = P(19 ≤ X ≤ 21) b. P(X = 20) = 1.0 c. P(X = 20) = 1 – P(X ≤ 20) d. P(X = 20) = 1 – P(X ≥ 0) e. None of the suggested answers are correct
Show that provided, P(B∩C)>0, [3+3=6] •P(A|B) = 0 will imply that P(A|B∩C) = 0. •P(A|B) =...
Show that provided, P(B∩C)>0, [3+3=6] •P(A|B) = 0 will imply that P(A|B∩C) = 0. •P(A|B) = 1 will imply thatP(A|B∩C) = 1.
If X ~ Binomial (n, p) and Y ~ Binomial (m, p) are independent variables with...
If X ~ Binomial (n, p) and Y ~ Binomial (m, p) are independent variables with the same probability p, what is the distribution for Z=X+Y? Is it still a binomial distribution? Write out the pdf for Z if it is binomial, otherwise, explain why it is not. What about W = X-Y, is it a binomial distribution? Write out the pdf for W if it is binomial, otherwise, explain why it is not.
Calculate the following binomial probability by either using one of the binomial probability tables, software, or...
Calculate the following binomial probability by either using one of the binomial probability tables, software, or a calculator using the formula below. Round your answer to 3 decimal places. P(x | n, p) = n! (n − x)! x! · px · qn − x    where    q = 1 − p P(x ≥ 2, n = 6, p = 0.5) =