Question

If random variable X has a binomial distribution with n =8 and P(success) = p =0.5,...

If random variable X has a binomial distribution with n =8 and P(success) = p =0.5, find the probability that X is at most 3. (That is, find P(X ≤ 3))

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Assume the random variable X has a binomial distribution with the given probability of obtaining a...
Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. Round your answer to four decimal places. P(X>3) P ( X > 3 ) , n=7 n = 7 , p=0.5 p = 0.5
Suppose that a random variable X has a binomial distribution with n=2, p=0.5. Find the mean...
Suppose that a random variable X has a binomial distribution with n=2, p=0.5. Find the mean and variance of Y = X2
Assume the random variable X has a binomial distribution with the given probability of obtaining success....
Assume the random variable X has a binomial distribution with the given probability of obtaining success. Find the following probability, given the number of trials and the probability of obtaining success. Round your answer to four decimal places. P(X≥7), n=10, p=0.3
Assume the random variable X has a binomial distribution with the given probability of obtaining a...
Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. Round your answer to four decimal places. P(X≥7), n=10, p=0.5
2a. A random variable follows a binomial distribution with probability of success, p = 0.45.    ...
2a. A random variable follows a binomial distribution with probability of success, p = 0.45.       For n = 10, find: The probability of exactly 2 success. The probability of 4 or fewer successes. The probability of at least 8 successes. The expected value of this binomial distribution. The variance and standard deviation of the distribution?
Assume the random variable X has a binomial distribution with the given probability of obtaining a...
Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. Round your answer to four decimal places. P(X<5) n=8, p=0.4
Assume the random variable X has a binomial distribution with the given probability of obtaining a...
Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. Round your answer to four decimal places. P(X < 4) , n = 8, p = 0.3
Suppose X is binomial random variable with n = 18 and p = 0.5. Since np...
Suppose X is binomial random variable with n = 18 and p = 0.5. Since np ≥ 5 and n(1−p) ≥ 5, please use binomial distribution to find the exact probabilities and their normal approximations. In case you don’t remember the formula, for a binomial random variable X ∼ Binomial(n, p), P(X = x) = n! x!(n−x)!p x (1 − p) n−x . (a) P(X = 14). (b) P(X ≥ 1).
Assume the random variable X has a binomial distribution with the given probability of obtaining a...
Assume the random variable X has a binomial distribution with the given probability of obtaining a success. Find the following probability, given the number of trials and the probability of obtaining a success. Round your answer to four decimal places. P(X>3)P(X>3), n=5, p=0.8
If the random variable X follows a binomial distribution with the probability of success given by...
If the random variable X follows a binomial distribution with the probability of success given by p, show that the variance of X is equal to np(1-p). [Hint:Consider first a Bernoulli probability distribution with n=1.]