Question

Suppose that Y has a binomial distribution with p = 0.60. (a) Use technology and the...

Suppose that Y has a binomial distribution with

p = 0.60.

(a)

Use technology and the normal approximation to the binomial distribution to compute the exact and approximate values of

P(Yμ + 1)

for n = 5, 10, 15, and 20. For each sample size, pay attention to the shapes of the binomial histograms and to how close the approximations are to the exact binomial probabilities. (Round your answers to five decimal places.)

n = 5

exact value

P(Yμ + 1)

= approximate value

P(Yμ + 1)

n = 10

exact value

P(Yμ + 1)

= approximate value

P(Yμ + 1)

n = 15

exact value

P(Yμ + 1)

= approximate value

P(Yμ + 1)

n = 20

exact value

P(Yμ + 1)

= approximate value

P(Yμ + 1)

Homework Answers

Answer #1

For each n,

the exact values are calculated in excel using the formula:

= BINOMDIST(np+1,n,p,TRUE) , where n, p and np are according to the values given.

the approximate values are calculated in excel using the formula:

=NORMDIST(np+1,np,npq,TRUE), where np and npq are selected in accordance.

p= 0.6
n= 5 10 15 20
np= 3 6 9 12
npq= 1.2 2.4 3.6 4.8
Exact value= 0.92224 0.83271 0.782722 0.749989
Approximate value = 0.797672 0.661539 0.609409 0.582516
Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose X is binomial random variable with n = 18 and p = 0.5. Since np...
Suppose X is binomial random variable with n = 18 and p = 0.5. Since np ≥ 5 and n(1−p) ≥ 5, please use binomial distribution to find the exact probabilities and their normal approximations. In case you don’t remember the formula, for a binomial random variable X ∼ Binomial(n, p), P(X = x) = n! x!(n−x)!p x (1 − p) n−x . (a) P(X = 14). (b) P(X ≥ 1).
Suppose that x has a binomial distribution with n = 202 and p = 0.47. (Round...
Suppose that x has a binomial distribution with n = 202 and p = 0.47. (Round np and n(1-p) answers to 2 decimal places. Round your answers to 4 decimal places. Round z values to 2 decimal places. Round the intermediate value (σ) to 4 decimal places.) (a) Show that the normal approximation to the binomial can appropriately be used to calculate probabilities about x np n(1 – p) Both np and n(1 – p) (Click to select)≥≤ 5 (b)...
Suppose that x has a binomial distribution with n = 199 and p = 0.47. (Round...
Suppose that x has a binomial distribution with n = 199 and p = 0.47. (Round np and n(1-p) answers to 2 decimal places. Round your answers to 4 decimal places. Round z values to 2 decimal places. Round the intermediate value (σ) to 4 decimal places.) (a) Show that the normal approximation to the binomial can appropriately be used to calculate probabilities about x. np n(1 – p) Both np and n(1 – p) (Click to select) 5 (b)...
Suppose Y is a random variable that follows a binomial distribution with n = 25 and...
Suppose Y is a random variable that follows a binomial distribution with n = 25 and π = 0.4. (a) Compute the exact binomial probability P(8 < Y < 14) and the normal approximation to this probability without using a continuity correction. Comment on the accuracy of this approximation. (b) Apply a continuity correction to the approximation in part (a). Comment on whether this seemed to improve the approximation.
Suppose that x has a binomial distribution with n = 200 and p = .4. 1....
Suppose that x has a binomial distribution with n = 200 and p = .4. 1. Show that the normal approximation to the binomial can appropriately be used to calculate probabilities for Make continuity corrections for each of the following, and then use the normal approximation to the binomial to find each probability: P(x = 80) P(x ≤ 95) P(x < 65) P(x ≥ 100) P(x > 100)
Assume XX has a binomial distribution. Use the binomial formula, tables, or technology to calculate the...
Assume XX has a binomial distribution. Use the binomial formula, tables, or technology to calculate the probability of the indicated event: a. n=20, p=0.7n=20, p=0.7 P(13 ≤ X ≤ 16)=P(13 ≤ X ≤ 16)= Round to four decimal places if necessary b. n=17, p=0.2n=17, p=0.2 P(2 < X < 5)=P(2 < X < 5)= Round to four decimal places if necessary please provide correct answer.
Compute​ P(x) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(x) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(x) using the normal distribution and compare the result with the exact probability. n=73 p=0.82 x=53 a) Find​ P(x) using the binomial probability distribution: P(x) = b) Approximate P(x) using the normal distribution: P(x) = c) Compare the normal approximation with the exact probability. The exact probability is less than the approximated probability by _______?
1. Normal Approximation to Binomial Assume n = 10, p = 0.1. a. Use the Binomial...
1. Normal Approximation to Binomial Assume n = 10, p = 0.1. a. Use the Binomial Probability function to compute the P(X = 2) b. Use the Normal Probability distribution to approximate the P(X = 2) c. Are the answers the same? If not, why?
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used...
Compute​ P(X) using the binomial probability formula. Then determine whether the normal distribution can be used to estimate this probability. If​ so, approximate​ P(X) using the normal distribution and compare the result with the exact probability. n=50​, p=0.50​, and x=17 For n=50​, p=0.5​, and X=17​, use the binomial probability formula to find​ P(X). Q: By how much do the exact and approximated probabilities​ differ? A. ____​(Round to four decimal places as​ needed.) B. The normal distribution cannot be used.
Suppose X has a binomial distribution with p = 0.3 and n = 20. Note that...
Suppose X has a binomial distribution with p = 0.3 and n = 20. Note that E[X] = 6. Compute P(5 <X < 8) exactly and approximately with the CLT. Answers: 0.4851 from normal, 0.4703 from exact computation. please write the process