Question

A 90 cm -long steel string with a linear density of 1.3 g/m is under 100...

A 90 cm -long steel string with a linear density of 1.3 g/m is under 100 N tension. It is plucked and vibrates at its fundamental frequency.

What is the wavelength of the sound wave that reaches your ear in a 20 C room?

Homework Answers

Answer #1

the frequency f of the vibrating string is

f = sqrt (T / u) / (2 * L)
where T is the tension, u is the linear density which is 0.0013 kg/m , and L is the length which is 0.9 meters, so

f = sqrt (100 / 0.0013) / (2 * 0.9) = 154.08 hertz

That frequency goes through the air with a velocity which depends on the temperature, using v as the temperature in celsius, as

cair = 331.3 * sqrt (1 + v / 273.15) in meters/second
cair = 331.3 * sqrt (1 + 20 / 273.15)
cair = 343meters/second

The wavelength is given by speed = wavelength * frequency, so

wavelength = cair / frequency
wavelength = 343 meters/second / 154.08 /sec
wavelength = 2.226 meters

I hope help you !!

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A guitar string has a linear mass density of 0.004 kg/m, a tension of 100 N,...
A guitar string has a linear mass density of 0.004 kg/m, a tension of 100 N, and is supposed to have a fundamental frequency of 110 Hz. When a tuning fork of that frequency is sounded while the string is plucked, a beat frequency of 4 Hz is heard. The peg holding the string is loosened, decreasing the tension, and the beat frequency increases. Before it was loosened and while it still had a tension of 100 N, The frequency...
A nylon guitar string has a linear density of 9.3 g/m and is under a tension...
A nylon guitar string has a linear density of 9.3 g/m and is under a tension of 151 N. The fixed supports are distance D = 98 cm apart. The string is oscillating in the standing wave pattern shown in the following figure. Calculate the frequency of the traveling waves for this standing wave.
A string that is under 50N of tension has a linear density of 5.0 g/m. A...
A string that is under 50N of tension has a linear density of 5.0 g/m. A sinusoidal wave with amplitude 3.0cm and wavelength 2.0 m travels along the wave. What is the maximum velocity of a particle on the string?
A guitar string has a linear mass density of 0.005 kg/m, a tension of 100 N,...
A guitar string has a linear mass density of 0.005 kg/m, a tension of 100 N, and is supposed to have a fundamental frequency of 110 Hz. When a tuning fork of that frequency is sounded while the string is plucked, a beat frequency of 2 Hz is heard. The peg holding the string is tightened, increasing the tension, and the beat frequency increases. Before it was tightened and while it still had a tension of 100 N, The frequency...
A Piano that has a string of L = 2(m) long and a mass of m...
A Piano that has a string of L = 2(m) long and a mass of m = 0.2(g) over that length. The Piano is tightened and its tension is T = 20(N). Determine the speed of propagation for a wave along that string? Let the fundamental mode has a wavelength of λ = L 2 Determine the frequency of sound associated with that string?
A guitar string with a linear density of 2.0 g/m is stretched between supports that are...
A guitar string with a linear density of 2.0 g/m is stretched between supports that are 60 cm apart. The string is observed to form a standing wave with three antinodes when driven at a frequency of 420 Hz. What are (a) the frequency of the fifth harmonic of this string and (b) the tension in the string?
A student uses a 2.00-m-long steel string with a diameter of 0.90 mm for a standing...
A student uses a 2.00-m-long steel string with a diameter of 0.90 mm for a standing wave experiment. The tension on the string is tweaked so that the second harmonic of this string vibrates at 22.0 Hz . (ρsteel=7.8⋅103 kg/m3) Calculate the tension the string is under. Calculate the first harmonic frequency for this sting. If you wanted to increase the first harmonic frequency by 44 % , what would be the tension in the string?
A rope with a linear mass density of 64 g/m is held under tension of 6...
A rope with a linear mass density of 64 g/m is held under tension of 6 N. A student moves one end of the rope up and down, creating a wave on the rope. If the end of the rope is attached to a thicker rope, with a linear mass density of 182 g/m, what must the frequency of the wave be in the thicker rope? The student moves the thin rope up and down 6 times per second. The...
A string with linear density 1.70 g/m is stretched along the positive x-axis with tension 18.0...
A string with linear density 1.70 g/m is stretched along the positive x-axis with tension 18.0 N. One end of the string, at x = 0.00 m, is tied to a hook that oscillates up and down at a frequency of 177.0Hz with a maximum displacement of 0.695 mm. At t = 0.00 s, the hook is at its lowest point. What is the wave speed on the string What is the wavelength?
A guitar string is 90 cm long and has a mass of 3.4 g . The...
A guitar string is 90 cm long and has a mass of 3.4 g . The distance from the bridge to the support post is L=62cm, and the string is under a tension of 540 N . What are the frequencies of the fundamental and first two overtones? (Enter your answers in ascending order separated by commas).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT