Question

A guitar string has a linear mass density of 0.005 kg/m, a tension of 100 N,...

A guitar string has a linear mass density of 0.005 kg/m, a tension of 100 N, and is supposed to have a fundamental frequency of 110 Hz. When a tuning fork of that frequency is sounded while the string is plucked, a beat frequency of 2 Hz is heard. The peg holding the string is tightened, increasing the tension, and the beat frequency increases.

  1. Before it was tightened and while it still had a tension of 100 N, The frequency of the guitar string was ["114", "112", "106", "110", "108"]         Hz.
  2. The length of the guitar string is most nearly ["78", "93", "63", "33", "48"] cm
  3. To achieve the correct pitch of 110 Hz, the tension should be adjusted to ["92.7", "110", "104", "108", "96.5"]      

Homework Answers

Answer #1

1) since on increasing the tension, the frequency of a sound produced is increased, and it is mentioned that the beat frequency is also increasing with the increasing tension the beat frequency is also increasing. It means that the original sound's frequency is greater than 110 Hz

Therefore, frequency of the sound produced is 110+2 = 112 Hz.

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A guitar string has a linear mass density of 0.004 kg/m, a tension of 100 N,...
A guitar string has a linear mass density of 0.004 kg/m, a tension of 100 N, and is supposed to have a fundamental frequency of 110 Hz. When a tuning fork of that frequency is sounded while the string is plucked, a beat frequency of 4 Hz is heard. The peg holding the string is loosened, decreasing the tension, and the beat frequency increases. Before it was loosened and while it still had a tension of 100 N, The frequency...
1.A string with linear density 2.0 g/m is under 500 N of tension. What is the...
1.A string with linear density 2.0 g/m is under 500 N of tension. What is the speed of waves on the string? Group of answer choices 500 m/s 300 m/s 200 m/s 400 m/s 2.A harmonic wave has angular frequency 250 rad/s and travels at 500 m/s. What is the wave number of the wave? Group of answer choices 0.50 rad/m 0.60 rad/m 0.70 rad/m 0.80 rad/m 3.When a tuning fork with frequency 256 Hz and a guitar string are...
A nylon guitar string has a linear density of 9.3 g/m and is under a tension...
A nylon guitar string has a linear density of 9.3 g/m and is under a tension of 151 N. The fixed supports are distance D = 98 cm apart. The string is oscillating in the standing wave pattern shown in the following figure. Calculate the frequency of the traveling waves for this standing wave.
a) A 1 meter long guitar string of linear mass density 2g/m3 is put under tension...
a) A 1 meter long guitar string of linear mass density 2g/m3 is put under tension until it resonates with a fundamental frequency of 440 Hz. Determine the tension that produces this fundamental frequency. Also determine the other of the first four harmonic frequencies and draw diagrams illustrating what each of these oscillations looks like on the string. b) This string will produce sound waves in the air, determine the wavelength of the sound waves. c) Suppose you had two...
A string with a mass density of 3.6 ? 10-3 kg/m is under a tension of...
A string with a mass density of 3.6 ? 10-3 kg/m is under a tension of 370 N and is fixed at both ends. One of its resonance frequencies is 720 Hz. The next higher resonance frequency is 840 Hz. (a) What is the fundamental frequency of this string? ______Hz (b) Which harmonics have the given frequencies? (Enter 1 for the first harmonic, 2 for the second harmonic, etc.) 720 Hz 840 Hz (c) What is the length of the...
A 90 cm -long steel string with a linear density of 1.3 g/m is under 100...
A 90 cm -long steel string with a linear density of 1.3 g/m is under 100 N tension. It is plucked and vibrates at its fundamental frequency. What is the wavelength of the sound wave that reaches your ear in a 20 C room?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT