Question

A wheel with a weight of 395 N comes off a moving truck and rolls without...

A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.1 rad/s . The radius of the wheel is 0.651 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom of the hill; this work has a magnitude of 3458 J .

Calculate h.

Use 9.81 m/s2 for the acceleration due to gravity.

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
PROBLEM 10.25 A wheel with a weight of 395 N comes off a moving truck and...
PROBLEM 10.25 A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 23.6 rad/s . The radius of the wheel is 0.580 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above...
A wheel with a weight of 396 N comes off a moving truck and rolls without...
A wheel with a weight of 396 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.2 rad/s . The radius of the wheel is 0.597 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 387 N comes off a moving truck and rolls without...
A wheel with a weight of 387 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.7 rad/s . The radius of the wheel is 0.592 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 386 N comes off a moving truck and rolls without...
A wheel with a weight of 386 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.0 rad/s . The radius of the wheel is 0.650 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 393 N comes off a moving truck and rolls without...
A wheel with a weight of 393 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 22.3 rad/s . The radius of the wheel is 0.628 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of habove the bottom of...
A 392 N wheel comes off a moving truck and rolls without slipping along a highway....
A 392 N wheel comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at 27 rad/s. The radius of the wheel is 0.600 m, and its moment of inertia about its rotation axis is 0.800MR2. Friction does work on the wheel as it rolls up the hill to a stop, a height h above the bottom of the hill; this work has absolute value 2600 J. Calculate hh.
A wheel of radius 0.168 m, which is moving initially at 33.0 m/s, rolls to a...
A wheel of radius 0.168 m, which is moving initially at 33.0 m/s, rolls to a stop in 288 m. Calculate the magnitudes of (a) its linear acceleration and (b) its angular acceleration. (c) The wheel's rotational inertia is 1.98 kg  m2 about its central axis. Calculate the magnitude of the torque about the central axis due to friction on the wheel.
A large sphere rolls without slipping across a horizontal surface as shown. The sphere has a...
A large sphere rolls without slipping across a horizontal surface as shown. The sphere has a constant translational speed of 10. m/s, a mass of 7.3 kg (16 lb bowling ball), and a radius of 0.20 m. The moment of inertia of the sphere about its center is I = (2/5)mr2. The sphere approaches a 25° incline of height 3.0 m and rolls up the ramp without slipping. (a) Calculate the total energy, E, of the sphere as it rolls...
Part A) A potter's wheel—a thick stone disk of radius 0.400 m and mass 138 kg—is...
Part A) A potter's wheel—a thick stone disk of radius 0.400 m and mass 138 kg—is freely rotating at 60.0 rev/min. The potter can stop the wheel in 5.00 s by pressing a wet rag against the rim and exerting a radially inward force of 58.9N. Find the effective coefficient of kinetic friction between the wheel and rag. Part B) The net work done in accelerating a solid cylindrical wheel from rest to an angular speed of 50rev/ min is...
1. A cylindrical wooden log rolls without slipping down a small ramp. The log has a...
1. A cylindrical wooden log rolls without slipping down a small ramp. The log has a radius of 16 cm, a length of 2.5 m, and a mass of 130 kg. The log starts from rest near the top of the ramp. When the log reaches the bottom of the ramp, it is rolling at a linear speed of 2.3 m/s. a.) Assuming that the log is a perfect cylinder of uniform density, find the log’s moment of inertia (about...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT