Question

A solid sphere with a moment of inertia of I = 2/5 M R2 is rolled...

A solid sphere with a moment of inertia of I = 2/5 M R2 is rolled down an incline which is inclined at 24 degrees. The radius of the sphere is 1.6 meters. The initial velocity of the center of mass at the top of the incline is 2 m/s. As the sphere rolls without slipping down the incline, it makes 26 revolutions as it travels all the way down the incline. How long, in seconds, does it take to roll down the incline? Ignore friction

THE CORRECT ANSWER IS 12.86. PLEASE SHOW ALL THE WORK TO GET THIS ANSWER. THANK YOU!

Homework Answers

Answer #1

DATA


SOLUTION

First, notice when they tell you "it makes 26 revolutions as it travels all the way down the incline", they are given to you the total distance traveled along the incline. When the sphere makes one revolution, this cover a distance equals to

when makes 2 revolutions

when it makes 26 revolutions

Using the Principle of conservation of energy,

isolating the final speed of the center of mass,

where is the height and is given by,

and is the moment of intertia around its center,

inserting eqs. (2) and (3) in (1),

or

Lets save this value, we are going to need it later. Now, we know that

isolating the time,

the acceleration is related to the distance by the equation,

isolating the acceleration,

inserting eq. (6) in (5),

this is equivalent to,

inserting the values given,

or

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sphere of mass M, radius r, and rotational inertia I is released from rest at...
A sphere of mass M, radius r, and rotational inertia I is released from rest at the top of an inclined plane of height h as shown above. (diagram not shown) If the plane has friction so that the sphere rolls without slipping, what is the speed vcm of the center of mass at the bottom of the incline?
A solid, homogeneous sphere with of mass of M = 2.25 kg and a radius of...
A solid, homogeneous sphere with of mass of M = 2.25 kg and a radius of R = 11.3 cm is resting at the top of an incline as shown in the figure. The height of the incline is h = 1.65 m, and the angle of the incline is θ = 17.3°. The sphere is rolled over the edge very slowly. Then it rolls down to the bottom of the incline without slipping. What is the final speed of...
A solid sphere of ice and a solid sphere of plastic are placed at the top...
A solid sphere of ice and a solid sphere of plastic are placed at the top of an inclined plane of length L and simultaneously released from rest, as shown in (Figure 1). Each has mass m and radius R. Assume that the coefficient of friction between the ice sphere and the incline is zero and that the plastic sphere rolls down the incline without slipping. Derive expressions for the following quantities in terms of L, θ, m, and R:...
A bowling ball (solid sphere, moment of inertia is (2/5)MR2) of mass M and radius R...
A bowling ball (solid sphere, moment of inertia is (2/5)MR2) of mass M and radius R rolls down a hill without slipping for a distance of L along the hill with slope of angle θ, starting from rest. At that point, the hill becomes frictionless.The ball continues down the hill for another segment of length 2L (thus the total distance travelled on the hill is 3L). The hill levels out into a horizontal area, where the coefficient of friction is...
A solid sphere of ice and a solid sphere of plastic are placed at the top...
A solid sphere of ice and a solid sphere of plastic are placed at the top of an inclined plane of length L and simultaneously released from rest, as shown in (Figure 1). Each has mass m and radius R. Assume that the coefficient of friction between the ice sphere and the incline is zero and that the plastic sphere rolls down the incline without slipping. Derive expressions for the following quantities in terms of L, θ, m, and R:...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely...
A uniform, solid sphere of radius 3.00 cm and mass 2.00 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 1.00 m long, and is tilted at an angle of 25.0 ∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v 2 at the bottom of the ramp.
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely...
A uniform, solid sphere of radius 4.50 cm and mass 2.25 kg starts with a purely translational speed of 1.25 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 22.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2=__________ m/s
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely...
A uniform, solid sphere of radius 3.50 cm and mass 1.25 kg starts with a purely translational speed of 2.50 m/s at the top of an inclined plane. The surface of the incline is 1.50 m long, and is tilted at an angle of 28.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed ?2 at the bottom of the ramp. ?2= m/s
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R=...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R= 0.5 m) are placed at the top of an incline at height (h= 10.0 m). The objects are released from rest and rolls down without slipping. a) The solid disk reaches to the bottom of the inclined plane before the hoop. explain why? b) Calculate the rotational inertia (moment of inertia) for the hoop. c) Calculate the rotational inertia (moment of inertia) for the...
A solid sphere of a radius 0.2 m is released from rest from a height of...
A solid sphere of a radius 0.2 m is released from rest from a height of 2.0 m and rolls down the incline as shown. If the initial speed Vi= 5 m/s, calculate the speed (Vf) of the sphere when it reaches the horizontal surface. (moment of inertia of a sphere is (2/5) Mr^)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT