Question

A particle of mass 0.195 g carries a charge of -2.50 x 10^-8 C. The particle...

A particle of mass 0.195 g carries a charge of -2.50 x 10^-8 C. The particle is given an initial horizontal velocity that is due north and has magnitude 4.00 x 10^4 m/s. What are the magnitude and direction of the minimum mgnetic field that will keep the particle moving in the earth's gravitational field in the same horizontal, northward direction? Conceptually explain why the B-field is in this direction.

Homework Answers

Answer #1

The formula for magnetic force on a moving charge is

F = Bqv

the formula for earth's gravitational field is

F = mg

Bqv = mg

B = mg/ qv

    =(0.195 * 10 ^-3 kg) (9.8)/ -2.50 x 10^-8 C. ( 4.00 x 10^4 m/s. )

= 1.91 T

Since the charge is negative, the magnetic force is opposite to the
right-hand rule direction. The minimum magnetic field is when the field is perpendicular to v! . The force is also
perpendicular toB
soB is either eastward or westward.

The magnetic field could also have a component along the north-south direction, that would not
contribute to the force, but then the field wouldnt have minimum magnitude

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle of mass 0.2g carries a charge 10^-8C. It was given an initial horizontal velocity...
A particle of mass 0.2g carries a charge 10^-8C. It was given an initial horizontal velocity ?? = (5 × 10^4 ??) in +x direction. What are the magnitude and direction of the minimum magnetic field that will cancel gravitational effects? Neglect Earth’s magnetic field.
The figure shows a particle that carries a charge of q0 = -2.80 × 10-6 C....
The figure shows a particle that carries a charge of q0 = -2.80 × 10-6 C. It is moving along the +y axis at a speed of v = 4.82 × 106 m/s. A magnetic field of magnitude 3.48 × 10-5 T is directed along the +z axis, and an electric field of magnitude 112 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x-axis in the...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a region of uniform electric and magnetic fields. The magnetic field is B=4.00 T in the +z-direction. The electric field is also in the +z-direction and has magnitude E=60.0 N/C. At time t = 0 the particle is on the y-axis at y=+1.00 m and has velocity v = 30.0 m/s in the +x-direction. Neglect gravity. What are the x-, y-, and z-coordinates of the...
A charged particle of mass m=1.14 g and charge q=1.03 μC is moving in the xz-plane...
A charged particle of mass m=1.14 g and charge q=1.03 μC is moving in the xz-plane (unit vectors i and k) under the action of both Earth's gravity g=−g k and the electric field E=−E i, where magnitude E=15.9 kV/m. The particle started at position x0=z0=0 with the initial velocity v0=v0i, the initial speed being v0=0.5 m/s.   At some point later in time, the particle is found in a position with the z-coordinate z=-33.8 cm. What is the x-coordinate of...
A charged particle of mass m=1.116 g and charge q=0.968 μC is moving in the xz-plane...
A charged particle of mass m=1.116 g and charge q=0.968 μC is moving in the xz-plane (unit vectors i and k) under the action of both Earth's gravity g=−g k and the electric field E=−E i, where magnitude E=7.02 kV/m. The particle started at position x0=z0=0 with the initial velocity v0=v0i, the initial speed being v0=0.74 m/s. At some point later in time, the particle is found in a position with the z-coordinate z=-32.8 cm. What is the x-coordinate of...
A charged particle of mass m=1.242 g and charge q=1.144 μC is moving in the xz-plane...
A charged particle of mass m=1.242 g and charge q=1.144 μC is moving in the xz-plane (unit vectors i and k) under the action of both Earth's gravity g=−g k and the electric field E=−E i, where magnitude E=10.8 kV/m. The particle started at position x0=z0=0 with the initial velocity v0=v0i, the initial speed being v0=0.98 m/s. At some point later in time, the particle is found in a position with the z-coordinate z=-32.8 cm. What is the x-coordinate of...
A particle with mass 2.1 x 10-3 kg and a charge of 1.7 x 10-8 C...
A particle with mass 2.1 x 10-3 kg and a charge of 1.7 x 10-8 C has, at a given instant, a velocity of v = (2.8 x 104 m/s)j. Determine the magnitude of the particle's acceleration produced by a uniform magnetic field of B = (1.4 T)i + (1.5 T)j. (include units with answer)
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is...
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is initially at rest accelerates through a potential difference V = 100 V and enters into a region 0 < x < d, where there is a uniform magnetic field of magnitude B = 1.5 T with direction perpendicular to the plane of the paper and inward. Use the coordinate system shown in the figure to answer the following questions. (Gravitational force on the particle...
A small particle has a mass of 3.5mg and carries a charge of 7.0μC. It is...
A small particle has a mass of 3.5mg and carries a charge of 7.0μC. It is launched in the horizontal direction with a speed of 10.0m/s from an altitude of 0.25m above a large horizontal surface. There is a downward pointing electric field of strength 5.5N/C everywhere above the surface. How far does the particle travel in the horizontal direction before contacting the surface? write up a neat solution showing all of the steps of your solution so that I...
A particle with negative charge q and mass m = 2.50×10−15 kg is traveling through a...
A particle with negative charge q and mass m = 2.50×10−15 kg is traveling through a region containing a uniform magnetic field B⃗ =(−0.110T)k^. At a particular instant of time the velocity of the particle is v⃗ =(1.00×106m/s)(−3i^+4j^+12k^) and the force F⃗ on the particle has a magnitude of 2.40 N . 1. Determine the acceleration a⃗ of the particle. Find the x-component in m/s^2. Find the y-component in m/s^2 2. Determine the radius of curvature R of the circular...