Question

A particle of mass 0.2g carries a charge 10^-8C. It was given an initial horizontal velocity...

A particle of mass 0.2g carries a charge 10^-8C. It was given an initial horizontal velocity ?? = (5 × 10^4 ??) in +x direction. What are the magnitude and direction of the minimum magnetic field that will cancel gravitational effects? Neglect Earth’s magnetic field.

Homework Answers

Answer #1

gravitational force acts down wards -z direction


gravitational force Fg = m*g (-k)

magnetic force = Fb


Fb + Fg = 0


Fb = -Fg

magnetic force Fb must act along +z direction ( upward)

magnetic force Fb = q*( V X B ) k


B = Bxi + Byj + Bzk

Fb = q*( vxi X (Bxi + Byj + Bzk )


Fb = q*vx*By ( i X j ) + q*vx*Bz ( i X k )

Fb = q*vx*By k - q*vx*Bz j


Fb is along +K


magnitude of Fb

Fb = q*vx*By

magnetic field is along +y direction


Fb = Fg

q*Vx*By = m*g


10^-8*5*10^4*By = 0.2*10^-3*9.8


minimum magnetic field By = 3.92 T

magnetic field is along +y direction

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle of mass 0.195 g carries a charge of -2.50 x 10^-8 C. The particle...
A particle of mass 0.195 g carries a charge of -2.50 x 10^-8 C. The particle is given an initial horizontal velocity that is due north and has magnitude 4.00 x 10^4 m/s. What are the magnitude and direction of the minimum mgnetic field that will keep the particle moving in the earth's gravitational field in the same horizontal, northward direction? Conceptually explain why the B-field is in this direction.
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a region of uniform electric and magnetic fields. The magnetic field is B=4.00 T in the +z-direction. The electric field is also in the +z-direction and has magnitude E=60.0 N/C. At time t = 0 the particle is on the y-axis at y=+1.00 m and has velocity v = 30.0 m/s in the +x-direction. Neglect gravity. What are the x-, y-, and z-coordinates of the...
A particle with a charge of −−1.24××10−8C−8C is moving with instantaneous velocity v⃗ v→ = (4.19××104m/s4m/s)i^i^...
A particle with a charge of −−1.24××10−8C−8C is moving with instantaneous velocity v⃗ v→ = (4.19××104m/s4m/s)i^i^ ++ (−−3.85××104m/s4m/s)j^j^ . 1)What is the force exerted on this particle by a magnetic field B⃗ B→ = (2.70 TT ) i^i^? Enter the xx, yy, and zz 2)What is the force exerted on this particle by a magnetic field B⃗ B→ = (2.70 TT ) k^k^? Enter the xx, yy, and zz
A particle with a charge of −1.24×10−8C is moving with instantaneous velocity v⃗ = (4.19×104m/s)i^ +...
A particle with a charge of −1.24×10−8C is moving with instantaneous velocity v⃗ = (4.19×104m/s)i^ + (−3.85×104m/s)j^ . Part A What is the force exerted on this particle by a magnetic field B⃗  = (1.40 T ) i^? Enter the x, y, and z components of the force separated by commas. Part B What is the force exerted on this particle by a magnetic field B⃗  = (1.40 T ) k^? Please solve and show how you get the z component from...
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is...
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is initially at rest accelerates through a potential difference V = 100 V and enters into a region 0 < x < d, where there is a uniform magnetic field of magnitude B = 1.5 T with direction perpendicular to the plane of the paper and inward. Use the coordinate system shown in the figure to answer the following questions. (Gravitational force on the particle...
The figure shows a particle that carries a charge of q0 = -2.80 × 10-6 C....
The figure shows a particle that carries a charge of q0 = -2.80 × 10-6 C. It is moving along the +y axis at a speed of v = 4.82 × 106 m/s. A magnetic field of magnitude 3.48 × 10-5 T is directed along the +z axis, and an electric field of magnitude 112 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x-axis in the...
A particle that has an 8.1-μC charge moves with a velocity of magnitude 3 × 105...
A particle that has an 8.1-μC charge moves with a velocity of magnitude 3 × 105 m/s along the +x axis. It experiences no magnetic force, although there is a magnetic field present. The maximum possible magnetic force that the charge with the given speed could experience has a magnitude of 0.470 N. Find the magnitude and direction of the magnetic field. Note that there are two possible answers for the direction of the field. I seem to be getting...
A particle that has an 8.9-µC charge moves with a velocity of magnitude 3.0 105 m/s...
A particle that has an 8.9-µC charge moves with a velocity of magnitude 3.0 105 m/s along the +x axis. It experiences no magnetic force, although there is a magnetic field present. The maximum possible magnetic force that the charge with the given speed could experience has a magnitude of 0.43 N. Find the magnitude and direction of the magnetic field. Note that there are two possible answers for the direction of the field.
A particle of 5 mg in mass and with a charge of -2.5x10 ^ 3 C,...
A particle of 5 mg in mass and with a charge of -2.5x10 ^ 3 C, affects a region of the magnetic field and acquires a circular path of 3 cm radius. If the velocity it carries is 2x10 ^ 3 m / s, determine: a) The magnitude of the required magnetic field b) The force experienced by the load c) The angle between the field and the speed
A particle of mass m and charge q enters a region of magnetic field, in a...
A particle of mass m and charge q enters a region of magnetic field, in a direction that is prependiuclar to the field boundary. The particle then exits the region in the opposite direction to the one it entered the field, 7.7 ms later. The distance between the point of entry and exit is 14.5 mm. If the particle is 4 times the mass of a proton, and carries 20 times the charge of a proton, what is the field...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT