Question

The figure shows a particle that carries a charge of q0 = -2.80 × 10-6 C....

The figure shows a particle that carries a charge of q0 = -2.80 × 10-6 C. It is moving along the +y axis at a speed of v = 4.82 × 106 m/s. A magnetic field of magnitude 3.48 × 10-5 T is directed along the +z axis, and an electric field of magnitude 112 N/C points along the -x axis. Determine (a) the magnitude and (b) direction (as an angle within x-y plane with respect to +x-axis in the range (-180°, 180°]) of the net force that acts on the particle.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle of mass m= 1.609x10^-10 kg and charge 1.609x10^-19 C is moving at v= 1.00x10^3...
A particle of mass m= 1.609x10^-10 kg and charge 1.609x10^-19 C is moving at v= 1.00x10^3 m/s in the NEGATIVE x direction as it enters a region of space containing a magnetic field B= 0.500 T, which is constant and directed at an angle of 45 degrees with respect to the POSITIVE x axis. A) What is the magnitude of the acceleration of the particle? B) What is the direction of the acceleration? Please clearly write out all formulas and...
One long wire carries current 14.0 A to the left along the x axis. A second...
One long wire carries current 14.0 A to the left along the x axis. A second long wire carries current 70.0 A to the right along the line (y = 0.280 m, z = 0). (a) Where in the plane of the two wires is the total magnetic field equal to zero? (b) A particle with a charge of ?2.00 µC is moving with a velocity of 150î Mm/s along the line (y = 0.100 m, z = 0). Calculate...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a...
A small particle with positive charge q=+4.25×10^−4 C and mass m=5.00×10^−5 kg is moving in a region of uniform electric and magnetic fields. The magnetic field is B=4.00 T in the +z-direction. The electric field is also in the +z-direction and has magnitude E=60.0 N/C. At time t = 0 the particle is on the y-axis at y=+1.00 m and has velocity v = 30.0 m/s in the +x-direction. Neglect gravity. What are the x-, y-, and z-coordinates of the...
Figure 4 shows a rectangular 95.0 turns coil of wire of dimensions 50 cm by 30...
Figure 4 shows a rectangular 95.0 turns coil of wire of dimensions 50 cm by 30 cm. It carries a current of 1.5 A in the counterclockwise direction. It is mounted in the x-y plane. The magnetic field makes an angle of θ= 41.0° with the positive x-axis and magnitude 1.2 T. Calculate the orientation energy of the coil in the magnetic field.
A particle of mass 0.195 g carries a charge of -2.50 x 10^-8 C. The particle...
A particle of mass 0.195 g carries a charge of -2.50 x 10^-8 C. The particle is given an initial horizontal velocity that is due north and has magnitude 4.00 x 10^4 m/s. What are the magnitude and direction of the minimum mgnetic field that will keep the particle moving in the earth's gravitational field in the same horizontal, northward direction? Conceptually explain why the B-field is in this direction.
A particle has a charge of q = +5.6 μC and is located at the origin....
A particle has a charge of q = +5.6 μC and is located at the origin. As the drawing shows, an electric field of Ex = +213 N/C exists along the +x axis. A magnetic field also exists, and its x and y components are Bx = +1.0 T and By = +1.6 T. Calculate the force (magnitude and direction) exerted on the particle by each of the three fields when it is (a) stationary, (b) moving along the +x...
Constants In (Figure 1), a beam of protons moves through a uniform magnetic field with magnitude...
Constants In (Figure 1), a beam of protons moves through a uniform magnetic field with magnitude 2.0 T , directed along the positive z axis. The protons have a velocity of magnitude 3.0×105 m/s in the x-z plane at an angle of 30 ∘ to the positive z axis. Find the force on a proton. The charge of the proton is q=+1.6×10−19C. SOLUTION SET UP We use the right-hand rule to find the direction of the force. The force acts...
A uniform electric field is directed along the +x axis and a point charge q= +6.0...
A uniform electric field is directed along the +x axis and a point charge q= +6.0 nC is moving in the electric field. First, th charge travels 40cm along the +x axis and then 30 cm along the -y axis. Find the magnitude of the electric field if the total work done by the field in moving the charge is W= 3.6 x 10^-6 J.
A particle of mass 0.2g carries a charge 10^-8C. It was given an initial horizontal velocity...
A particle of mass 0.2g carries a charge 10^-8C. It was given an initial horizontal velocity ?? = (5 × 10^4 ??) in +x direction. What are the magnitude and direction of the minimum magnetic field that will cancel gravitational effects? Neglect Earth’s magnetic field.
a) What is the radius of the circular path of a charge of 29.2 x 10-6...
a) What is the radius of the circular path of a charge of 29.2 x 10-6 C and a mass of 2.29 x 10-9 kg moving with a speed of 517 m/s perpendicular to magnetic field with a magnitude of 0.28 ? b) A positive charge of 327.3 x 10-6 C is moving perpendicular to a uniform magnetic field of 1,940 T. What is the magnitude of the magnetic force exerted on this charge if its speed is 0.41 m/s?...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT