Question

A particle in a strange potential well has the following two lowest-energy stationary states: ψ1(x) =...

A particle in a strange potential well has the following two lowest-energy stationary states:

ψ1(x) = C1 sin^2 (πx) for − 1 ≤ x ≤ 1

ψ2(x) = C2 sin^2 (πx) for − 1 ≤ x ≤ 0

ψ2(x) = −C2 sin^2 (πx) for 0 ≤ x ≤ 1

The energy of ψ1 state is ¯hω. The energy of ψ2 state is 2¯hω. The particle at t = 0 is in a superposition state Ψ(x, t = 0) = 1/√ 2 [ψ1(x) + ψ2(x)].

1) Find the real positive coefficients C1 and C2 to normalize the wavefunctions ψ1(x) and ψ2(x). Show ψ1(x) and ψ2(x) are orthonormal.

2) What is the time-dependent wavefunction Ψ(x, t) of the particle? Draw the wavefunction at t = π/ω and t = 2π/ω .

3) Calculate the probability distribution of the particle as a function of time. Express it as a real function, and comment on its time dependence.

4) Calculate (x)(t).

5) If a measurement is made at t = 2π/13ω to probe the energy of the particle, what values might you get, and what is the probability of getting each of them?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle in a simple harmonic oscillator potential V (x) = 1 /2mω^2x^2 has an initial...
A particle in a simple harmonic oscillator potential V (x) = 1 /2mω^2x^2 has an initial wave function Ψ(x,0) = (1/ √10)(3ψ1(x) + ψ2(x)) , where ψ1 and ψ2 are the stationary state solutions of the first and second energy level. Using raising and lowering operators (no explicit integrals except for orthonomality integrals!) find <x> and <p> at t = 0
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
Consider the full time-dependent wavefunctions Ψ(x, t) = ψ(x)φ(t). For the case of an infinite square...
Consider the full time-dependent wavefunctions Ψ(x, t) = ψ(x)φ(t). For the case of an infinite square well in 1D, these were Ψn(x, t) = Sqrt (2/L) sin(nπx/L) e^(−i(En/h)t In general, the probability density |Ψn|2 is time-independent. But suppose instead of being ina fixed energy state, we are in a special state Ψmix(x, t) = √12(Ψ1 − iΨ2). What is the time-dependent part of |Ψmix|2?
In this problem we are interested in the time-evolution of the states in the infinite square...
In this problem we are interested in the time-evolution of the states in the infinite square potential well. The time-independent stationary state wave functions are denoted as ψn(x) (n = 1, 2, . . .). (a) We know that the probability distribution for the particle in a stationary state is time-independent. Let us now prepare, at time t = 0, our system in a non-stationary state Ψ(x, 0) = (1/√( 2)) (ψ1(x) + ψ2(x)). Study the time-evolution of the probability...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a...
A free particle has the initial wave function Ψ(x, 0) = Ae−ax2 where A and a are real and positive constants. (a) Normalize it. (b) Find Ψ(x, t). (c) Find |Ψ(x, t)| 2 . Express your result in terms of the quantity w ≡ p a/ [1 + (2~at/m) 2 ]. At t = 0 plot |Ψ| 2 . Now plot |Ψ| 2 for some very large t. Qualitatively, what happens to |Ψ| 2 , as time goes on? (d)...
Consider a particle trapped in an infinite square well potential of length L. The energy states...
Consider a particle trapped in an infinite square well potential of length L. The energy states of such a particle are given by the formula: En=n^2ℏ^2π^2 /(2mL^2 ) where m is the mass of the particle. (a)By considering the change in energy of the particle as the length of the well changes calculate the force required to contain the particle. [Hint: dE=Fdx] (b)Consider the case of a hydrogen atom. This can be modeled as an electron trapped in an infinite...
An infinite square well has a particle of mass m that is in a state |├...
An infinite square well has a particle of mass m that is in a state |├ ψ(0)〉=A(├ |1〉-├ |2〉+├ i|3〉) at time t=0. The kets ├ |1〉,├ |2〉, and ├ |3〉 correspond to the first three energy eigenstates of the infinite square well. Find the normalized state vector. What are the energy measurement outcomes and their probabilities? What is the energy expectation value? What is the normalized state vector at time t? What are the energy measurement outcomes and their...
The infinite potential well has zero potential energy between 0 and a, and is infinite elsewhere....
The infinite potential well has zero potential energy between 0 and a, and is infinite elsewhere. a) What are the energy eigenstates of this quantum system, and what are their energies? In the case of a discrete spectrum, explain where the quantization comes from. b) Suppose we take the wavefunction at a given time to be an arbitrary function of x that is symmetric around the center of the well (at x = a/2). Is this a stationary state in...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...