Question

An infinite square well has a particle of mass m that is in a state |├...

An infinite square well has a particle of mass m that is in a state |├ ψ(0)〉=A(├ |1〉-├ |2〉+├ i|3〉) at time t=0. The kets ├ |1〉,├ |2〉, and ├ |3〉 correspond to the first three energy eigenstates of the infinite square well. Find the normalized state vector. What are the energy measurement outcomes and their probabilities? What is the energy expectation value? What is the normalized state vector at time t? What are the energy measurement outcomes and their probabilities at time t=ℏ/E_3?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
Consider a particle mass M in an infinite square well of width (W) with the initial...
Consider a particle mass M in an infinite square well of width (W) with the initial state: |?〉=?(|?)〉+7?|?-〉) What are the possible results of an energy measurement and the probability of each?
The infinite potential well has zero potential energy between 0 and a, and is infinite elsewhere....
The infinite potential well has zero potential energy between 0 and a, and is infinite elsewhere. a) What are the energy eigenstates of this quantum system, and what are their energies? In the case of a discrete spectrum, explain where the quantization comes from. b) Suppose we take the wavefunction at a given time to be an arbitrary function of x that is symmetric around the center of the well (at x = a/2). Is this a stationary state in...
quantum physics: Considera particle in the ground state of an infinite square well where the left...
quantum physics: Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time t, and then falls back at a linear rate in a time t. What is the probability that the particle is now in the first excited state?
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the...
Consider the wave function at t = 0, ψ(x, 0) = C sin(3πx/2) cos(πx/2) on the interval 0 ≤ x ≤ 1. (1) What is the normalization constant, C? (2) Express ψ(x,0) as a linear combination of the eigenstates of the infinite square well on the interval, 0 < x < 1. (You will only need two terms.) (3) The energies of the eigenstates are En = h̄2π2n2/(2m) for a = 1. What is ψ(x, t)? (4) Compute the expectation...
Considera particle in the ground state of an infinite square well where the left half of...
Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time τ, and then falls back at a linear rate in a time τ. What is the probability that the particle is now in the first excited state?
Consider a particle trapped in an infinite square well potential of length L. The energy states...
Consider a particle trapped in an infinite square well potential of length L. The energy states of such a particle are given by the formula: En=n^2ℏ^2π^2 /(2mL^2 ) where m is the mass of the particle. (a)By considering the change in energy of the particle as the length of the well changes calculate the force required to contain the particle. [Hint: dE=Fdx] (b)Consider the case of a hydrogen atom. This can be modeled as an electron trapped in an infinite...
In this problem we are interested in the time-evolution of the states in the infinite square...
In this problem we are interested in the time-evolution of the states in the infinite square potential well. The time-independent stationary state wave functions are denoted as ψn(x) (n = 1, 2, . . .). (a) We know that the probability distribution for the particle in a stationary state is time-independent. Let us now prepare, at time t = 0, our system in a non-stationary state Ψ(x, 0) = (1/√( 2)) (ψ1(x) + ψ2(x)). Study the time-evolution of the probability...
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the...
For a particle trapped in a one-dimensional infinite square well potential of length ?, find the probability that the particle is in its ground state is in a) The left third of the box: 0 ≤ ? ≤ ?/3 b) The middle third of the box: ?/3 ≤ ? ≤ 2?/3 c) The right third of the box: 2?/3 ≤ ? ≤ L After doing parts a), b), and c): d) Calculate the sum of the probabilities you got for...
A particle in a strange potential well has the following two lowest-energy stationary states: ψ1(x) =...
A particle in a strange potential well has the following two lowest-energy stationary states: ψ1(x) = C1 sin^2 (πx) for − 1 ≤ x ≤ 1 ψ2(x) = C2 sin^2 (πx) for − 1 ≤ x ≤ 0 ψ2(x) = −C2 sin^2 (πx) for 0 ≤ x ≤ 1 The energy of ψ1 state is ¯hω. The energy of ψ2 state is 2¯hω. The particle at t = 0 is in a superposition state Ψ(x, t = 0) = 1/√...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT