Question

What is the limitation on the order if diffraction that can be seen for a given...

What is the limitation on the order if diffraction that can be seen for a given color of light passing through a given grating, and what would be the max order observed when 400nm of light is passed through that same grating?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A diffraction grating is made with 750 lines per millimeter is illuminated with violet light of...
A diffraction grating is made with 750 lines per millimeter is illuminated with violet light of wave length 400nm. How many lines can be observed with this grating? If the intense white light is incident on the same diffracting grating what is the angular separation between the violet edge (400nm) and red edge (700nm)? What is the highest order in which the complete visible spectrum can be seen using this grating (λ =400-700nm)?
A diffraction grating has a slit distance of 3 μm. At what angle will purple light...
A diffraction grating has a slit distance of 3 μm. At what angle will purple light (405 nm) be seen in the 1st order? At what angle will turquoise light (484 nm) be seen in the second order? If the light is projected on a screen 0.3 m away, how wide will the whole second order (400nm – 680nm) appear on the screen?
It is found that when blue light, λ = 470 nm, passes through a diffraction grating...
It is found that when blue light, λ = 470 nm, passes through a diffraction grating with a slit separation d, the diffraction pattern has a third order maximum at an angle θ = 44.8o. At what angle will red light, λ = 660 nm, have it's second order maximum when passed through the same diffraction grating. A. 29.4o B. 39.7o C. 41.3o D. 31.6o
A-The first-order line of 584 nm light falling on a diffraction grating is observed at a...
A-The first-order line of 584 nm light falling on a diffraction grating is observed at a 16.6° angle. Calculate the number of lines per centimetre on the grating. B- At what angle will the second-order line be observed?
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle...
Monochromatic light at 577 nm illuminates a diffraction grating with 325 lines/mm. Determine (a) the angle to the first - order maximum, (b) the highest order that can be observed with this grating at the given wavelength, and (c) the angle to this highest - order maximum
1. Intense white light is incident on a diffraction grating that has 752 lines/mm. (a) What...
1. Intense white light is incident on a diffraction grating that has 752 lines/mm. (a) What is the highest order in which the complete visible spectrum can be seen with this grating? (Enter 1 for first order, 2 for second order, etc.) (b) What is the angular separation between the violet edge (400 nm) and the red edge (700 nm) of the first order spectrum produced by the grating? 2. The angle of incidence of a light beam in air...
A diffraction grating with 180 slots/mm is illuminated with a light that contains only two wavelengths...
A diffraction grating with 180 slots/mm is illuminated with a light that contains only two wavelengths 400nm and 500 nm. The signal has aangle of incidence of 5 °. What is the angular distance between the second-order maxima of the two wavelengths? What is the smallest angle at which the two maxima overlap? What is the highest order at which maximums associated with the two wavelengths are present in the diffraction pattern?
You have a diffraction grating with 3000 lines/cm. You also have a light source that emits...
You have a diffraction grating with 3000 lines/cm. You also have a light source that emits light at 2 different wavelengths, 428 nm and 707 nm, at the same time. The screen for your experiment is 1.5 meters from the diffraction grating. A. What is the line spacing for the grating? B. What is the difference in the angle of the 2nd bright fringe for each wavelength for this grating? C. Which wavelength is closer to the center of the...
A 500 lines per mm diffraction grating is illuminated by light of wavelength 540 nm ....
A 500 lines per mm diffraction grating is illuminated by light of wavelength 540 nm . You may want to review (Pages 544 - 547) . Part A What is the maximum diffraction order seen?
1) For a certain diffraction grating experiment using 500-nm light, the third dark fringe above the...
1) For a certain diffraction grating experiment using 500-nm light, the third dark fringe above the center line occurs at an angle of 30° above the center line. The screen is 6.00m from the slits. Why is this angle larger than the angle for the double-slit experiment above using the same wavelength of light? [Ignore any effects of single-slit diffraction.] Group of answer choices these diffraction grating slits are more closely-spaced these diffraction grating slits are spaced farther apart from...