Question

You have a diffraction grating with 3000 lines/cm. You also have a light source that emits...

You have a diffraction grating with 3000 lines/cm. You also have a light source that emits light at 2 different wavelengths, 428 nm and 707 nm, at the same time. The screen for your experiment is 1.5 meters from the diffraction grating.

A. What is the line spacing for the grating?

B. What is the difference in the angle of the 2nd bright fringe for each wavelength for this grating?

C. Which wavelength is closer to the center of the diffraction pattern?

D. How would the color separation be different if you used a 1200 lines/cm grating? Explain.

E. What is the width of the central maximum for each wavelength if the same light source is used to illuminate a single slit with a width of 0.054 mm?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
With a diffraction grating that has 3800 slits/cm, a monochromatic light source produces 2nd order bright...
With a diffraction grating that has 3800 slits/cm, a monochromatic light source produces 2nd order bright fringe at an angle of 22 (a) What is the wavelength of the source? Express this in meters and nm. (b) Draw a diagram indicating the 1st and 2nd order bright fringes. Indicate all the parameters. (c) If the screen is 0.3-m away, how far (in cm) is 2nd order bright fringe from the center? please explain
Helium atoms emit light at several wavelengths. Light from a helium lamp illuminates a diffraction grating...
Helium atoms emit light at several wavelengths. Light from a helium lamp illuminates a diffraction grating and is observed on a screen 50.00 cm behind the grating. The emission at wavelength 501.5 nm creates a first-order bright fringe 21.90 cm from the central maximum. What is the wavelength of the bright fringe that is 26.63 cm from the central maximum?
Given a diffraction grating with 8*10 3 lines/cm and a laser producing 450 nm light: a....
Given a diffraction grating with 8*10 3 lines/cm and a laser producing 450 nm light: a. What are the angles for the first and second bright fringe from the central fringe? b. Would you be able to see the 3 rd fringe? If so what is the angle, if not why?
Can you show the solution and steps 1.) In an experiment involving a diffraction grating where...
Can you show the solution and steps 1.) In an experiment involving a diffraction grating where a screen is place 2 meters behind the grating and light with a wavelength lambda= 6.8x10^(-7) meters is used, the distance from the central bright fringe to the first order bright fringe is y=4.9 cm. What is the distance between the lines of the diffraction grating in micrometers? 2.) A telescope with a lens diameter of 0.85 m is used to view two planets...
Image a square aperture of width 149 \[Mu]m, 2775 mm away from a diffraction grating with...
Image a square aperture of width 149 \[Mu]m, 2775 mm away from a diffraction grating with a groove spacing of 1888 grooves/mm. You illuminate the diffraction grating by sending polychromatic light where the wavelengths are relatively close together and the average wavelength is 1037 nm through the square aperture onto the diffraction grating. What is the resolving power of the diffraction grating for second order light in this setup? (Assume the diffraction pattern is a Fraunhofer diffraction pattern.)
24.73 . LIght is incident on a diffraction grating with 8600 lines/cm , and the pattern...
24.73 . LIght is incident on a diffraction grating with 8600 lines/cm , and the pattern is viewed on a screen 2.5 m from the grating. The incident light beam consists of two wavelengths, 4.5×10?7 m and 6.9×10?7 m . Part A Calculate the linear distance between the first-order bright fringes of these two wavelengths on the screen.
Monochromatic light of wavelength 588 nm is incident upon a diffraction grating that contains 8500 lines...
Monochromatic light of wavelength 588 nm is incident upon a diffraction grating that contains 8500 lines spread out over a distance of 1.5 cm. a) What is the line spacing of the grating? b) At what angle does the 2nd principle maximum occur? c) If the screen is located a distance of 1.55 m from the grating, what is the linear distance on the screen that separates the central maximum with the 2nd order principle maximum?
Green light of wavelength 500 nm passes through a diffraction grating having 10−610−6 m between lines.  ...
Green light of wavelength 500 nm passes through a diffraction grating having 10−610−6 m between lines.   How far away from the central bright spot is the next bright spot on a screen 2 m away (in meters)? Suppose the light passing through the diffraction grating is composed of many different wavelengths. Rank the following colors according to the spacing between the bright spots of that color from least to greatest, so the least would have the smallest spacing between maxima....
The spectrum of a light source has two lines with lB =504nm(blue) and λR = 672...
The spectrum of a light source has two lines with lB =504nm(blue) and λR = 672 nm (red). This light is used to illuminate a 2-cm long diffraction grating. The first order (m=1) (1)  diffracted blue line is observed at θB =14 . (a) Find the spacing between the rulings of the grating. (b) Specify the diffraction angles of the blue and red lines for the first two orders. (c) How many lines will be observed for each color?
Light from a Hydrogen lamp is focused through a diffraction grating with 770 lines/cm and the...
Light from a Hydrogen lamp is focused through a diffraction grating with 770 lines/cm and the diffraction pattern is shown on a screen that is 5.30 m away. You notice in the pattern that there are two distinct purple dots that are 16.46 cm and 17.70 cm from the central maximum, corresponding to the first-order maxima for two different wavelengths of light emitted by the lamp. What is the difference between the two wavelengths (in nm) corresponding to these purple...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT