Question

a 300 g car is at a top of a hill that is 5 m tall,...

a 300 g car is at a top of a hill that is 5 m tall, and rolls down colliding with a car that is 400 g that was at the bottom of that hill what is the height that the carts should reach? And what is the minimum initial speed that the car needs to go to be at the top of the right hill (if the hill on the right was 1 m)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hollow sphere (mass M, radius R) starts from rest at the top of a hill...
A hollow sphere (mass M, radius R) starts from rest at the top of a hill of height H. It rolls down the hill without slipping. Find an expression for the speed of the ball's center of mass once it reaches the bottom of the hill.
Starting from rest, a basketball rolls from the top of a hill to the bottom, reaching...
Starting from rest, a basketball rolls from the top of a hill to the bottom, reaching a translational speed of 4.00 m/s. Ignore frictional losses. (a) What is the height of the hill? m (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom? m/s
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching...
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.9 m/s. Ignore frictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom?
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching...
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 6.5 m/s. Ignore frictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom?
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching...
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 5.4 m/s. Ignore frictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom?
A toy car, with mass m = 200 g is given a velocity of 10 m...
A toy car, with mass m = 200 g is given a velocity of 10 m s at the top of the first hill with height h = 1 m. The toy car goes down the hill to the ground and starts up the second hill of height h = 2 m. At the top of the hill is a spring, with spring constant k = 100 N C . How far does the spring compress when the car gets...
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching...
Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 7.5 m/s. Ignore frictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom? (a) Number Units (b) Number Units
A 2,000 kg car reaches the top of a 100 meter hill at A with a...
A 2,000 kg car reaches the top of a 100 meter hill at A with a speed vA = 40 m/s as shown in the figure below. A hill B is shown in the figure to the right of hill A. (a) Assume there is no frictional loss of energy between the car and the hills. What is the speed of the car (vB) when it gets to the top of the 150 meter hill at B? PHYS 201-001 Summer...
1.) Starting from rest, a basketball rolls from the top to the bottom of a hill,...
1.) Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 5.3 m/s. Ignore frictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom? 2.) A bowling ball encounters a 0.760-m vertical rise on...
A car is driving over the top of a circularly shaped hill. What is the fastest...
A car is driving over the top of a circularly shaped hill. What is the fastest speed that the car can go without losing contact with the hill? Assume that the hill's radius is 23 m.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT