Question

A 2,000 kg car reaches the top of a 100 meter hill at A with a...

A 2,000 kg car reaches the top of a 100 meter hill at A with a speed vA = 40 m/s as shown in the figure below. A hill B is shown in the figure to the right of hill A. (a) Assume there is no frictional loss of energy between the car and the hills. What is the speed of the car (vB) when it gets to the top of the 150 meter hill at B? PHYS 201-001 Summer 2020 3 (b) Assume now that there is another larger hill located to the right of B. In terms of vertical distance, how far up hill C will the car go (HC) before it momentarily stops? For this problem, there is no friction ? (c) Now we are going to assume there are frictional losses between the hills and the car. What is the speed vB at the top of the 150 m high hill at B if all sources of friction do work equal to −500,000 J on the car as it coasts in neutral from A to B? Remember the lost frictional work is equal to the amount of energy the car will lose because of friction during the trip

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2000 kg car reaches the top of a 100 meter high hill at A with...
A 2000 kg car reaches the top of a 100 meter high hill at A with a speed vA = 40 m/s . What is the speed vB at the top of the 150 m high hill at B if all sources of friction do work equal to −500,000 J on the car as it coasts in neutral from A to B? 13.5 m/s 11.0 m/s 18.6 m/s 10.1 m/s 14.9 m/s
The 2040 kg cable car shown in the figure descends a 200-m-high hill. In addition to...
The 2040 kg cable car shown in the figure descends a 200-m-high hill. In addition to its brakes, the cable car controls its speed by pulling an 1860 kg counterweight up the other side of the hill. The rolling friction of both the cable car and the counterweight are negligible. Part A: How much braking force does the cable car need to descend at constant speed? Part B: One day the brakes fail just as the cable car leaves the...
A roller coaster car with a mass of 920.5 kg starts from rest at the top...
A roller coaster car with a mass of 920.5 kg starts from rest at the top of a 47.1 m hill labeled h1. The car travels to the bottom of the hill and continues up the next hill that is 12.5 m high and labeled h2. a.) Ignoring friction, what is the speed of the roller coaster car at the bottom of the hill? b.) Ignoring friction, what is the speed of the roller coaster car at the top of...
A small sports car and a pickup truck start coasting down a 12 m hill together,...
A small sports car and a pickup truck start coasting down a 12 m hill together, side by side. The mass of the sports car is 640 kg and the mass of the pickup truck is 1280 kg (twice the mass of the sports car). Assuming no friction or air resistance, what is the kinetic energy of each vehicle at the bottom of the hill? Give your answers in joules. HINT: How does the kinetic energy of a vehicle at...
A 41.0-kg skier with an initial speed of 1.5 X 101 m/s coasts up a 2.50-m-high...
A 41.0-kg skier with an initial speed of 1.5 X 101 m/s coasts up a 2.50-m-high rise as shown below. The coefficient of friction between her skis and the snow is 0.0800. a) Where do you define the gravitational potential energy Ug to equal 0 J? b) If the skier has energy at the bottom of the hill state what kind it is and determine its value. c) If the skier reaches the top of the hill what kind of...
1.) Starting from rest, a basketball rolls from the top to the bottom of a hill,...
1.) Starting from rest, a basketball rolls from the top to the bottom of a hill, reaching a translational speed of 5.3 m/s. Ignore frictional losses. (a) What is the height of the hill? (b) Released from rest at the same height, a can of frozen juice rolls to the bottom of the same hill. What is the translational speed of the frozen juice can when it reaches the bottom? 2.) A bowling ball encounters a 0.760-m vertical rise on...
A sleigh and driver with a total mass of 130 kg are pulled up a hill...
A sleigh and driver with a total mass of 130 kg are pulled up a hill with a 15∘ incline by a horse, as illustrated in the figure(Figure 1). Part A Part complete If the overall retarding frictional force is 850 N and the sled moves up the hill with a constant velocity of 5.0 km/h , what is the power output of the horse? (Express in horsepower, of course.) Express your answer using two significant figures. P =   hp  ...
1. A 85.0-kg speed skier has finished a long down hill race and reaches a final...
1. A 85.0-kg speed skier has finished a long down hill race and reaches a final slope (fig. 1 below) designed to slow her down. At the bottom of this slope her speed is 29.0 m/s. She slides up the inclined plane of snow on her skis and at a certain vertical height h has speed 1.95 m/s. The force of friction between her skis and the snow does work of magnitude 3995.0 J . (Ignore air friction.) (a) What...
Modern roller coasters have vertical loops like the one shown in the figure. The radius of...
Modern roller coasters have vertical loops like the one shown in the figure. The radius of curvature is smaller at the top than on the sides so that the downward centripetal acceleration at the top will be greater than the acceleration due to gravity, keeping the passengers pressed firmly into their seats. A) What is the speed of the roller coaster in m/s at the top of the loop if the radius of curvature there is 11 m and the...
A 1,240-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes...
A 1,240-kg car traveling initially with a speed of 25.0 m/s in an easterly direction crashes into the rear end of a 8,700-kg truck moving in the same direction at 20.0 m/s (see figure below). The velocity of the car right after the collision is 18.0 m/s to the east. Two images depicting a before and after scenario of a car colliding with the back of a truck. Before: The car is moving at a velocity of +25.0 m/s. This...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT