Question

A 1.00 ft3 well insulated rigid can initially contains refrigerant 134a at 90 psia and 30°F....

A 1.00 ft3 well insulated rigid can initially contains refrigerant 134a at 90 psia and 30°F. Now a crack develops in the can and the refrigerant starts to leak out slowly. Assuming the refrigerant remaining in the can has undergone a reversible, adiabatic process, determine the final mass in the can when the pressure drops to 15 psia.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Frictionless piston-cylinder system. Initially contains 167 L of saturated liquid Refrigerant-134a. The piston can move freely...
Frictionless piston-cylinder system. Initially contains 167 L of saturated liquid Refrigerant-134a. The piston can move freely in such that it maintains pressure at 877 kPa, an Isobaric process. The Refrigerant-134a is heated until its temperature rises to 70 ℃ Determine: The work was done during the process in (kJ) units?
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of...
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of water at 100 kPa and half of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized (state 2). Determine (a) the initial specific volume in m3/kg, (b) the final specific entropy in kJ/kg.K and (c) change of entropy in kJ/K.
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of...
Initially (state 1) a well-insulated rigid tank contains 20 kg of a saturated liquid-vapor mixture of water at 100 kPa and half of the mass is in the liquid phase. An electric resistance heater placed in the tank is now turned on and kept on until all the liquid in the tank is vaporized (state 2). Determine (a) the initial specific volume in m3/kg, (b) the final specific entropy in kJ/kg.K and (c) change of entropy in kJ/K.
A closed, rigid steel tank contains 1 lbm of water, initially at 260 F and a...
A closed, rigid steel tank contains 1 lbm of water, initially at 260 F and a quality of 60%. The tank is fitted with a paddle wheel and the water is stirred until the temperature is 350 F. The tank is well insulated on the outside and the steel is in thermal equilibrium with the water. The mass of the steel tank itself (not including water) is 60 lbm and the specific heat of the tank is 0.115 Btu/lbm·R. Changes...
A closed, rigid steel tank contains 1 lbm of water, initially at 260F and a quality...
A closed, rigid steel tank contains 1 lbm of water, initially at 260F and a quality of 60%. The tank is fitted with a paddle wheel and the water is stirred until the temperature is 350F. The tank is well insulated on the outside and the steel is in thermal equilibrium with the water. The mass of the steel tank itself (not including water) is 60 lbm and the specific heat of the tank is 0.115 Btu/lbm·R. Changes in kinetic...