Question

(15-17)         An AC series RL circuit has a source RMS voltage of 100 V, an inductance...

(15-17)         An AC series RL circuit has a source RMS voltage of 100 V, an inductance of 50 mH, and a resistance of 10 W. The AC source operates at 60 Hz.

15.         For this circuit, which of the following is true?

Group of answer choices

The current leads the source voltage.

The current lags the source voltage.

The current and source voltage are in phase.

None of the above.

  1. Which of the following for this circuit has the greater value?

Group of answer choices

Resistance

Inductive Reactance

total circuit impedance

  1. The RMS current for this circuit will be about

Group of answer choices

9.58 A

3.47 A

9.23 A

4.69 A

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In RLC series circuit, an AC source with a rms voltage of 220 V and frequency...
In RLC series circuit, an AC source with a rms voltage of 220 V and frequency 60 Hz is connected to a resistor, a capacitor 65 µF and an inductor of inductance 185 mH. If the observed current is 4.4 A, evaluate the resistance of the resistor.
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?
An RLC circuit consists of an alternating voltage source with RMS voltage 12 V and frequency...
An RLC circuit consists of an alternating voltage source with RMS voltage 12 V and frequency 70 Hz, a 200 Ohm resistor, a 1.2 H inductor, and an 800 nF capacitor, all wired in series. a)  What is the inductive reactance of the circuit? b)  What is the capacitive reactance of the circuit? c)  What is the impedance of the circuit? d)  What is the RMS current in the circuit? e)  If the frequency is adjustable, what frequency should you use to maximize the current...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50...
A series AC circuit contains a resistor, an inductor of 210 mH, a capacitor of 5.50 µF, and a source with ΔVmax = 240 V operating at 50.0 Hz. The maximum current in the circuit is 200 mA. (a) Calculate the inductive reactance. Ω (b) Calculate the capacitive reactance. Ω (c) Calculate the impedance. kΩ (d) Calculate the resistance in the circuit. kΩ (e) Calculate the phase angle between the current and the source voltage. °
An AC voltage source has an RMS voltage of 10 volts and it is connected in...
An AC voltage source has an RMS voltage of 10 volts and it is connected in series to an inductor, a capacitor, and a resistor. At the resonant frequency the maximum current in the circuit is 7 amps and the inductive reactance is 10 Ohms. What is the maximum current in the circuit, in amps, at a frequency which is a factor of 2.5 more than the resonant frequency? ***PLEASE ONLY ANSWER IF 100% CORRECT***
A generator with rms voltage of rms = 120 V drives an RLC circuit at frequency...
A generator with rms voltage of rms = 120 V drives an RLC circuit at frequency f = 60 Hz. The load resistance R and reactance values of the inductor L and the capacitor C of the circuit are given by R = 50 , XL = 50 , XC = 150 , respectively What is the impedance of the circuit? What is the peak current amplitude in the circuit? What is the phase angle  of the circuit? The...
In the circuit shown, the AC voltage source supplies an rms voltage of 142 V at...
In the circuit shown, the AC voltage source supplies an rms voltage of 142 V at frequency f. The circuit has R = 106 W, XL = 186 W, and XC = 92 W. (a) Find the impedence of the circuit. (b) Find the rms current flowing in the circuit. (c) Find the phase angle in degrees between the current in the circuit and the voltage supplied by the AC source. (d) At the instant the voltage across the generator...
A full-wave rectifier has a 120 V rms, 60 Hz ac source. The load is a...
A full-wave rectifier has a 120 V rms, 60 Hz ac source. The load is a series inductance, resistance and dc voltage source, with L = 100 mH, R = 10 Ω, and Vdc = 50 V. a). Determine an expression for load current. b). Determine the power absorbed by the dc voltage source. c). Determine the power absorbed by the resistance. d). Determine the power factor of the source.
2. AC supply voltage V= 230 Vrms at 60 Hz is connected to a RL load...
2. AC supply voltage V= 230 Vrms at 60 Hz is connected to a RL load of resistance, R = 10 ohms and inductance, L= 20 mH. Predicts the current lagging and power loss due to lagging effect.
A generator connected to an RLC circuit has an rms voltage of 120 V and an...
A generator connected to an RLC circuit has an rms voltage of 120 V and an rms current of 39 mA . Part A If the resistance in the circuit is 3.2 k? and the capacitive reactance is 6.5 k? , what is the inductive reactance of the circuit? Express your answers using two significant figures. Enter your answers numerically separated by a comma.