Question

A tennis ball is dropped from a height of 18 ft upon a plate. The coefficient...

A tennis ball is dropped from a height of 18 ft upon a plate. The coefficient of restitution is 0.9. Find the height after 1st, 2nd, 3rd, and 4th bounces.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A tennis ball is dropped from a height of 20 ft upon a plate. e is...
A tennis ball is dropped from a height of 20 ft upon a plate. e is 0.894. Find the height to which the ball rebounds on the 1st, 2nd, and 3rd bounces.
A ball with a mass of 2.0 kg is dropped from a height of 1.5 m....
A ball with a mass of 2.0 kg is dropped from a height of 1.5 m. The ball hits the floor and bounces back to a height of 1.1 m. Use energy conservation wherever possible to answer these questions. (a) What is the speed of the ball just before it reaches the floor initially? (b) What is the speed of the ball just after it leaves the floor? (c) How much work is done by the floor? (d) The coefficient...
A 1.5 kg ball is dropped from a height of 3 m above the ground and...
A 1.5 kg ball is dropped from a height of 3 m above the ground and upon striking the ground bounces up to a height of 2 m. Ignoring air resistance, find the time it takes the ball to bounce up to a height of 2 m after it is dropped.
A very bouncy ball is dropped from a height of 2.23 m to an asphalt playground...
A very bouncy ball is dropped from a height of 2.23 m to an asphalt playground surface and the height of its 6th bounce is measured to be 1.53 m. Find the coefficient of restitution of the ball for a collision with asphalt.
1. a tennis ball is dropped from a height of 2 m and it rebounds 95...
1. a tennis ball is dropped from a height of 2 m and it rebounds 95 cm. use g=10 m/s^2, and the tennis ball weights .058 kg. a) find the change of momentum when the ball is at a height of 1.5 m downward and at 0.5 m downward. which i got -3.14 kg m/s for the 1.5 m, and -0.18 kg m/s, and then what is the impulse exerted on the object during that change of momentum? b) compute...
A tennis ball is dropped from 1.95 m above the ground. It rebounds to a height...
A tennis ball is dropped from 1.95 m above the ground. It rebounds to a height of 0.932 m. Part 1.With what velocity does it hit the ground? The acceleration of gravity is 9.8 m/s 2 . (Let down be negative.) Answer in units of m/s. Part 2. With what velocity does it leave the ground? Answer in units of m/s. Part 3. If the tennis ball were in contact with the ground for 0.00859 s, find the acceleration given...
A 2.33 kg ball is dropped from a height of 3 m.  The ball then bounces back...
A 2.33 kg ball is dropped from a height of 3 m.  The ball then bounces back upward a distance of 2.2 m. How much energy was lost in the collision with the ground? 50.2 J 18.3 J 68.5 J 118.7 J A 2.33 kg ball is dropped from a height of 3 m.  The ball then bounces back upward a distance of 2.2 m. How much momentum does the ball have immediately after bouncing off the ground? 5.13 kg m/s 21.6...
A ball drops from a height of 2 meters. Each time it hits the ground, it...
A ball drops from a height of 2 meters. Each time it hits the ground, it bounces up 68 percent of the height it fall. Calculate the coefficient of restitution.
A rubber ball of mass m is dropped from a height h. If the ball loses...
A rubber ball of mass m is dropped from a height h. If the ball loses energy on each bounce so that its speed just after each bounce is 90% of its speed just before each bounce, then Önd an expression for the height the ball reaches after the 3rd bounce
A 160 g ball is dropped from a height of 2.2 m , bounces on a...
A 160 g ball is dropped from a height of 2.2 m , bounces on a hard floor, and rebounds to a height of 1.1 m . The figure(Figure 1) shows the impulse received from the floor. Part A What maximum force does the floor exert on the ball?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT