Question

A rubber ball of mass m is dropped from a height h. If the ball loses...

A rubber ball of mass m is dropped from a height h. If the ball loses energy on each bounce so that its speed just after each bounce is 90% of its speed just before each bounce, then Önd an expression for the height the ball reaches after the 3rd bounce

Homework Answers

Answer #1

Let speed before any bounce be Vo
speed after bounce is 0.9Vo
Kinetic energy before any bounce = Ko
Kinetic energy after bounce = (0.9)2 Ko = 0.81 Ko
kinetic energy before first bounce = mgh (initial potential energy of ball is converted to kinetic energy just before bounce)
Kinetic energy after 3rd bounce = (0.81)3 mgh
                                                   = 0.53 mgh
Height after 3rd bounce = 0.53h

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 584.5 g rubber ball is dropped from a height of 24.31 m and undergoes a...
A 584.5 g rubber ball is dropped from a height of 24.31 m and undergoes a perfectly elastic collision with the earth. What is the earth's speed after the collision? Assume the earth was at rest just before the collision. How many years would it take the earth to move 4.65 mm at this speed?
A ball with a mass of 2.0 kg is dropped from a height of 1.5 m....
A ball with a mass of 2.0 kg is dropped from a height of 1.5 m. The ball hits the floor and bounces back to a height of 1.1 m. Use energy conservation wherever possible to answer these questions. (a) What is the speed of the ball just before it reaches the floor initially? (b) What is the speed of the ball just after it leaves the floor? (c) How much work is done by the floor? (d) The coefficient...
A 2.0kg rubber ball is dropped from a height of 1.0m above the floor. a.       Using energy...
A 2.0kg rubber ball is dropped from a height of 1.0m above the floor. a.       Using energy (not equations of motion), what is the ball’s speed just before it hits the floor? b. If it then bounces back to a height of 0.70m, what is the speed of the ball, just as it leaves the ground? Again, use energy rather than equations of motion. c.       How much kinetic energy is lost?
A 0.6 kg ball is dropped from a height, h, of 2 meters (at point A)....
A 0.6 kg ball is dropped from a height, h, of 2 meters (at point A). It hits the ground and bounces back up to a height of 1 meter (at point B) on its first bounce. (3 pts each) a. What is the total energy of the ball at A? b. What is the total energy of the ball at B? c. Why did the ball not bounce back up to its starting height?
A 20 g ball is dropped from a height of 1.8 m. It rebounds from the...
A 20 g ball is dropped from a height of 1.8 m. It rebounds from the ground with 80% of the speed it had just before it hit the ground. Assume that during the bounce the gound causes a constant force on the ball for 75 ms. What is the force applied to the ball by the ground in N?
a 2 kg block is dropped from a height of 10 m and loses 28% of...
a 2 kg block is dropped from a height of 10 m and loses 28% of its mechanical energy by the time it reaches the ground.with what speed does it hit the ground? a 20 gram bullet is shot vertically upwards 200 m/s into an initially stationary 2kg block, after which they move together. how high do they travel?
You drop a ball from a height of 1.7 m , and it bounces back to...
You drop a ball from a height of 1.7 m , and it bounces back to a height of 1.3 m . Part A What fraction of its initial energy is lost during the bounce? Part B What is the ball's speed just before the bounce? Express your answer to two significant figures and include the appropriate units. Part C What is the ball's speed just after the bounce?
(a) A superball of mass 0.1kg is dropped from a height of 3 meters above the...
(a) A superball of mass 0.1kg is dropped from a height of 3 meters above the floor. It then bounces up to a height of 2.6 meters. Find the velocity of the ball the instant before it reaches ground level. (Hint: use energy equations) (b) Calculate the velocity the ball must have after the bounce at the instant it leaves the ground the reach the height of 2.6 meters. (c) Use these velocities to calculate the change i. momentum of...
A ball is dropped from rest from the top of a building of height h. At...
A ball is dropped from rest from the top of a building of height h. At the same instant, a second ball is projected vertically upward from ground level, such that it has zero speed when it reaches the top of the building. (12 points) When do the two balls pass each other? Answer it in terms of h. Which ball has greater speed when they are passing? What is the height of the two balls when they are passing?
consider that you have dropped a 300g rubber ball on the floor from a height of...
consider that you have dropped a 300g rubber ball on the floor from a height of 2.00 m. also assume that the velocites of the ball immediately before and after contact with the floor are 6 m/s and 5 m/s. A. find the momentum of the ball immediately before and after contact with the floor? B. find the change in momentum C. taking the contact time of the ball and the floor to he 10 mili-second, find the impusle on...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT