Question

A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz...

A 200 g mass attached to a horizontal spring oscillates at a frequency of 2.0 Hz . At one instant t=0s, the mass is at x=5.0cm and has V=−30cm/s. Determine the time that the mass passes through the equilibrium position for the first time.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 255 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz...
A 255 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz . At t =0s, the mass is at x= 4.40 cm and has vx =− 34.0 cm/s . Determine: The period. The angular frequency. The amplitude. The phase constant.
A 245 g mass attached to a horizontal spring oscillates at a frequency of 1.30 Hz...
A 245 g mass attached to a horizontal spring oscillates at a frequency of 1.30 Hz . At t =0s the mass is at x= 4.20 cm and has vx=−=− 42.0 cm/s Determine the phase constant and max speed
A 195 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz...
A 195 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz . At t =0s, the mass is at x= 6.00 cm and has vx =? 40.0 cm/s . Determine:? the phase constant, the maximum speed, the maximum acceleration and the total energy
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz...
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz . At t =0s, the mass is at x= 4.20 cm and has vx =− 23.0 cm/s . Determine: (a) the period s (b) the angular frequency rad/s (c) the amplitude cm (d) the phase constant rad (e) the maximum speed cm/s (f) the maximum acceleration cm/s2 (g) the total energy J (h) the position at t = 4.2s
A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz...
A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz . At t =0s, the mass is at x= 6.80 cm and has vx =− 27.0 cm/s . Determine: The period. Enter your answer numerically to five significant figures. The angular frequency. Enter your answer numerically to five significant figures. The amplitude. Enter your answer numerically to five significant figures. The phase constant. Enter your answer numerically to four significant figures.
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The...
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The velocity of the mass is modeled by the function v = 2πfA cos(2πft) when at t = 0, x = 0. What is the magnitude of the velocity in cm/s at the equilibrium position for an amplitude of 4.5 cm and a frequency of 2.3 Hz?
A mass is attached to the end of a spring and set into oscillation on a...
A mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a stretched position. The position of the mass at any time is described by x = (6.6 cm)cos[2?t/(1.58 s)]. Determine the following. (a) period of the motion s (b) frequency of the oscillations Hz (c) first time the mass is at the position x = 0 (d) first time the mass is at the site of maximum...
A 400 gram mass is attached to a horizontal spring with a frequency of 2 Hz....
A 400 gram mass is attached to a horizontal spring with a frequency of 2 Hz. The mass has a speed of 40 cm/s and is located at x=5 cm.. A) find the period of motion B) find the amplitude of motion C) find the maximum speed of the mass D) find the total energy of the mass
A mass of 3.0kg is attached to a spring with k = 500 N m ....
A mass of 3.0kg is attached to a spring with k = 500 N m . The mass is constrained to move in the x-direction on a frictionless horizontal surface. At time t = 0s the mass is 0.050m to the right of its equilibrium position moving to the right at 1.12m s . Where is the mass at t = 0.365s?
1. A mass is attached to a horizontal spring, and oscillates with a period of 1.2...
1. A mass is attached to a horizontal spring, and oscillates with a period of 1.2 s and with an amplitude of 14 cm. At t = 0 s, the mass is 14 cm to the right of the equilibrium position. a) Write down the function for the position, velocity, and acceleration of the mass as a function of time. The only variable you should have in your expressions is time. Make sure you indicate the units for each function....