Question

A mass is attached to the end of a spring and set into oscillation on a...

A mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a stretched position. The position of the mass at any time is described by x = (6.6 cm)cos[2?t/(1.58 s)]. Determine the following.

(a) period of the motion

s

(b) frequency of the oscillations
Hz

(c) first time the mass is at the position x = 0

(d) first time the mass is at the site of maximum compression of the spring

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass of 0.12 kg is attached to a spring and set into oscillation on a...
A mass of 0.12 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.42 m)cos[(14 rad/s)t]. Determine the following. (a) amplitude of oscillation for the oscillating mass (b) force constant for the spring (c) position of the mass after it has been oscillating for one half a period (d) position of the mass one-third of a period after it has been released...
A mass of 0.380 kg is attached to a spring and set into oscillation on a...
A mass of 0.380 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.800 m)cos[(10.0 rad/s)t]. Determine the following. (a) amplitude of oscillation for the oscillating mass ____m (b) force constant for the spring ____ N/m (c) position of the mass after it has been oscillating for one half a period ______ m (d) position of the mass one-sixth of a period...
A mass of 0.520 kg is attached to a spring and set into oscillation on a...
A mass of 0.520 kg is attached to a spring and set into oscillation on a horizontal frictionless surface. The simple harmonic motion of the mass is described by x(t) = (0.780 m)cos[(18.0 rad/s)t]. Determine the following. (a) amplitude of oscillation for the oscillating mass (b) force constant for the spring N/m (c) position of the mass after it has been oscillating for one half a period (d) position of the mass one-third of a period after it has been...
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The...
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The velocity of the mass is modeled by the function v = 2πfA cos(2πft) when at t = 0, x = 0. What is the magnitude of the velocity in cm/s at the equilibrium position for an amplitude of 4.5 cm and a frequency of 2.3 Hz?
A 0.58 kg mass is attached to a light spring with a force constant of 31.9...
A 0.58 kg mass is attached to a light spring with a force constant of 31.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position m/s...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9...
A 0.68 kg mass is attached to a light spring with a force constant of 36.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass    m/s (b) speed of the oscillating mass when the spring is compressed 1.5 cm    m/s (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is...
A 0.774 kg mass is on the end of a frictionless, horizontal spring. The spring is stretched 0.0566 m and released. It completes 12 oscillations in 4.62 s. Calculate: a) the oscillation frequency, b) the oscillation period, c) the spring force constant, d) the total mechanical energy of the oscillating spring, e) the maximum speed of the oscillating spring.
A 275 g mass rests on a frictionless surface and is attached to an unknown horizontal...
A 275 g mass rests on a frictionless surface and is attached to an unknown horizontal spring. It is stretched 2.50 cm and released, and the oscillation of the system has a frequency of 1.00 Hz. What is the force constant of the spring? (3) What is the mechanical energy of system? (3) Over 12.0 s, the amplitude decreases to 1.75 cm. What is the damping constant? (4) Bonus: what would the damping constant be if the system is critically...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9...
A 0.24 kg mass is attached to a light spring with a force constant of 30.9 N/m and set into oscillation on a horizontal frictionless surface. If the spring is stretched 5.0 cm and released from rest, determine the following. (a) maximum speed of the oscillating mass b) speed of the oscillating mass when the spring is compressed 1.5 cm (c) speed of the oscillating mass as it passes the point 1.5 cm from the equilibrium position (d) value of...
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other...
A 4.00 kg mass on a frictionless horizontal surface is attached to a spring. The other end of the spring is fixed to a wall. The spring constant is 6.00 N/m. The mass is moved to the right, stretching the spring by 12.0 cm, and then released from rest. a) Find the frequency of the motion in Hz. b) Find the force when x = 6.00 cm. c) Find the time when x = 6.00 cm. d) Find the velocity...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT