Question

A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz...

A 240 g mass attached to a horizontal spring oscillates at a frequency of 5.20 Hz . At t =0s, the mass is at x= 6.80 cm and has vx =− 27.0 cm/s . Determine:

The period.

Enter your answer numerically to five significant figures.

The angular frequency.

Enter your answer numerically to five significant figures.

The amplitude.

Enter your answer numerically to five significant figures.

The phase constant.

Enter your answer numerically to four significant figures.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz...
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz . At t =0s, the mass is at x= 4.20 cm and has vx =− 23.0 cm/s . Determine: (a) the period s (b) the angular frequency rad/s (c) the amplitude cm (d) the phase constant rad (e) the maximum speed cm/s (f) the maximum acceleration cm/s2 (g) the total energy J (h) the position at t = 4.2s
A 280-g object attached to a spring oscillates on a frictionless horizontal table with a frequency...
A 280-g object attached to a spring oscillates on a frictionless horizontal table with a frequency of 4.00 Hz and an amplitude of 25.0 cm. 1) Calculate the maximum potential energy of the system.(Express your answer to three significant figures.) 2) Calculate the displacement of the object when the potential energy is one-half of the maximum.(Express your answer to three significant figures.) 3) Calculate the potential energy when the displacement is 10.0 cm.(Express your answer to three significant figures.)
A mass of 220 g oscillates on a horizontal frictionless surface at a frequency of 2.7...
A mass of 220 g oscillates on a horizontal frictionless surface at a frequency of 2.7 Hz and with amplitude of 4.6 cm . What is the effective spring constant for this motion? How much energy is involved in this motion?
A 400 gram mass is attached to a horizontal spring with a frequency of 2 Hz....
A 400 gram mass is attached to a horizontal spring with a frequency of 2 Hz. The mass has a speed of 40 cm/s and is located at x=5 cm.. A) find the period of motion B) find the amplitude of motion C) find the maximum speed of the mass D) find the total energy of the mass
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 4.50 cmcm left of the equilibrium position and moving to the right at 32.6 cm/s . Part A. What is the phase constant? Express your answer to three significant figures and include the appropriate units.
A 0.500-kg mass attached to an ideal massless spring with a spring constant of 12.5 N/m...
A 0.500-kg mass attached to an ideal massless spring with a spring constant of 12.5 N/m oscillates on a horizontal, frictionless surface. At time t = 0.00 s, the mass is located at x = –2.00 cm and is traveling in the positive x-direction with a speed of 8.00 cm/s. PART A: Find the angular frequency of the oscillations. Express your answer in rad/s. PART B: Determine the amplitude of the oscillations. Express your answer with the appropriate SI units....
A mass attached to a spring oscillates with a period of 1.12·s and an amplitude of...
A mass attached to a spring oscillates with a period of 1.12·s and an amplitude of 40·cm. At time t = 0 the mass is at x = +28·cm and is moving in the positive direction (away from equilibrium). What is the phase constant? (degrees) Where is it at time t = 4.5·s? (cm)
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k =...
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k = 100 N/m moves on a horizontal surface. At the initial moment in time, the mass is moving to the right at rate of 3.5 m/s and displacement of 0.2 m to the right of equilibrium. a) What is the angular frequency, period of oscillation, and phase constant? b) What is the amplitude of oscillation (Hint: Use energy.) and maximum speed of the spring-mass system?
An 81.9 g mass is attached to a horizontal spring with a spring constant of 3.5...
An 81.9 g mass is attached to a horizontal spring with a spring constant of 3.5 N/m and released from rest with an amplitude of 39.1 cm. What is the speed of the mass when it is halfway to the equilibrium position if the surface is frictionless? Answer in units of m/s.
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT