Question

You are given 100 g of coffee (same specific heat as water) at 80.0° C (too...

You are given 100 g of coffee (same specific heat as water) at 80.0° C (too hot to drink). In order to cool the coffee to 50.0° C (neglect heat content of the cup and heat exchanges with the surroundings) calculate: a. How much tap water at 20.0° C must be added? b. How much ice (at 0.0° C) must be added? c. How much ice (at -10.0° C) must be added? 2. How much energy is required to heat 7.5 kg of ice at -30°C to steam at 200°C?

a. How much tap water at 20.0° C must be added?

b. How much ice (at 0.0° C) must be added?

c. How much ice (at -10.0° C) must be added?

I've found how much energy it takes to go from 80 C to 50C but I'm unsure how to Get grams

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
How much heat is required to convert 80.0 g of ice at -20.0°C into liquid water...
How much heat is required to convert 80.0 g of ice at -20.0°C into liquid water at 50.0°C?
Your 300 mL cup of coffee is too hot to drink when served at 90°C. An...
Your 300 mL cup of coffee is too hot to drink when served at 90°C. An ice cube, taken from a −20°C freezer is used to cool your coffee to a pleasant 60°C. Assume that you have a well-insulated cup. a. Provide the statement of energy conservation for this closed “coffee-ice” system. b. What is the heat lost by coffee in bringing down the temperature to 60°C? c. How much heat is consumed in converting ice to water at 0°C?...
You have 200 g of coffee at 55C, Coffee has the same specific heat as water....
You have 200 g of coffee at 55C, Coffee has the same specific heat as water. How much ice at -5C do you need to add in order to reduce the coffee’s temperature to 27C?
1. You need design a freezer that will keep the temperature inside a -5.0 C and...
1. You need design a freezer that will keep the temperature inside a -5.0 C and will operate with a temperature inside at 5.0 C and will operate in a room with a temperature of 22.0 C. The freezer is to make 20.0 kg of ice at 0.0 C starting with water at 20.0 C. For water, the specific heat is 4190 J/kg-K, the heat of fusion is 333 kj/kg. a. How much energy must be removed from the water...
An insulated thermos contains 106 cm3 of hot coffee at a temperature of 67.0◦C. You put...
An insulated thermos contains 106 cm3 of hot coffee at a temperature of 67.0◦C. You put in 12.0 g of ice at its melting point to cool the coffee. By how many degrees has your coffee cooled just after all the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment.
You decide to put a 40.0 g ice cube at -10.0°C into a well insulated coffee...
You decide to put a 40.0 g ice cube at -10.0°C into a well insulated coffee cup (of negligible heat capacity) containing  of water at 5.0°C. When equilibrium is reached, how much of the ice will have melted? The specific heat of ice is 2090 J/kg ∙ K, that of water is 4186 J/kg ∙ K, and the latent heat of fusion of water is 33.5 × 104 J/kg.
You have 200 g of coffee at 45 0C, Coffee has the same specific heat as...
You have 200 g of coffee at 45 0C, Coffee has the same specific heat as water. How much ice at -10 0C do you need to add in order to reduce the coffee’s temperature to 30 0
Calculate the heat required to convert 10.0 g of ice at 0.0 °C to steam at...
Calculate the heat required to convert 10.0 g of ice at 0.0 °C to steam at 100.0 °C. The specific heat of water is 1.00 cal/(g x °C); the heat of fusion is 80.0 cal/g; and the heat of vaporization is 540.0 cal/g. Choose one of the following 7.20 x 103 cal 1.80 x 103 cal 5.40 x 103 cal 6.20 x 103 cal 6.40 x 103 cal
A quantity of ice at 0.0 °C was added to 33.6 g of water at 41.0...
A quantity of ice at 0.0 °C was added to 33.6 g of water at 41.0 °C to give water at 0.0 °C. How much ice was added? The heat of fusion of water is 6.01 kJ/mol, and the specific heat is 4.18 J/(g•°C). ______ grams
How much heat must be removed from 100 g of water at 25.0°C to change it...
How much heat must be removed from 100 g of water at 25.0°C to change it into ice at -10.0°C? The specific heat of ice is 2090 J/kg · K, and the specific heat of water is 4186 J/kg · K. For water LF = 334,000 J/kg and LV = 2.256 × 106 J/kg.