Question

A quantity of ice at 0.0 °C was added to 33.6 g of water at 41.0...

A quantity of ice at 0.0 °C was added to 33.6 g of water at 41.0 °C to give water at 0.0 °C. How much ice was added? The heat of fusion of water is 6.01 kJ/mol, and the specific heat is 4.18 J/(g•°C). ______ grams

Homework Answers

Answer #1

Heat lost by water = heat gained by ice

                mcdt = m'L

Where

m = mass of water = 33.6 g

c = specific heat = 4.18 J/(g•°C)

dt = change in temperature of water = final - initial = 41.0 - 0 = 41.0 oC

m' = mass of ice = ?

L = heat of fusion of water = 6.01 kJ/mol

                                      = 6.01x103 J/mol

                                      = 6.01x103 (J/mol) x (1/18)( mol /g)

                                      = 334 J/g

Plug the values we get

mcdt = m'L

33.6x4.18x41 = m'x334

m' = 17.2 g

Therefore the quantity of ice added is 17.2 grams

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
100. g of ice at 0 degrees C is added to 300.0 g of water at...
100. g of ice at 0 degrees C is added to 300.0 g of water at 60 degrees C. Assuming no transfer of heat to the surroundings, what is the temperature of the liquid water after all the ice has melted and equilibrium is reached? Specific Heat (ice)= 2.10 J/g C Specific Heat (water)= 4.18 J/g C Heat of fusion = 333 J/g Heat of vaporization= 2258 J/g
Calculate the amount of energy necessary to warm 10.0 g of ice from 0.0° C to...
Calculate the amount of energy necessary to warm 10.0 g of ice from 0.0° C to 137.0° C. Express your answer in kJ. Do not enter units of measurement, do not enter the answer in scientific notation. The specific heat is 4.184 J/g∙°C for water and 1.99 J/g∙°C for steam. ΔHvap is 40.79 kJ/mol and ΔHfus is 6.01 kJ/mol.
Calculate the enthalpy change, ΔH, for the process in which 10.3 g of water is converted...
Calculate the enthalpy change, ΔH, for the process in which 10.3 g of water is converted from liquid at 9.4 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and Cs = 4.18  J/(g⋅∘C) for H2O(l). How many grams of ice at -24.5 ∘C can be completely converted to liquid at 9.8 ∘C if the available heat for this process is 5.03×103 kJ ? For ice, use a specific heat of 2.01 J/(g⋅∘C) and...
How much heat is released when 105 g of steam at 100.0°C is cooled to ice...
How much heat is released when 105 g of steam at 100.0°C is cooled to ice at -15.0°C? The enthalpy of vaporization of water is 40.67 kJ/mol, the enthalpy of fusion for water is 6.01 kJ/mol, the molar heat capacity of liquid water is 75.4 J/(mol • °C), and the molar heat capacity of ice is 36.4 J/(mol • °C).
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The...
A 0.4-L glass of water at 20°C is to be cooled with ice to 5°C. The density of water is 1 kg/L, and the specific heat of water at room temperature is c = 4.18 kJ/kg·°C. The specific heat of ice at about 0°C is c = 2.11 kJ/kg·°C. The melting temperature and the heat of fusion of ice at 1 atm are 0°C and 333.7 kJ/kg. A) Determine how much ice needs to be added to the water, in...
What is the total heat flow if 28 grams of water at 12°C is cooled to...
What is the total heat flow if 28 grams of water at 12°C is cooled to become ice at –19°C? The specific heat of liquid water is 4.18 J/g • °C; the specific heat of ice is 2.1 J/g • °C. The heat of fusion of ice is 333 J/g, and the freezing point of water is 0.0°C.
The enthalpy change for converting 10.0 g of ice at -25.0 degrees C to water at...
The enthalpy change for converting 10.0 g of ice at -25.0 degrees C to water at 80.0 degrees C is _______kJ.  The specific heats of ice, water, and steam are 2.09 J/g-K, 4.18 J/g-K, and 1.84 J/g-K, respectively.  For H2O, Delta Hfus=6.01 kJ/mol, and Delta Hvap=40.67 Kj/mol Please explain steps used as well. Thank you.
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0...
Two 20.0-g ice cubes at –20.0 °C are placed into 285 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature, Tf, of the water after all the ice melts. heat capacity of H2O(s) is 37.7 J/mol*K heat capacity of H2O(l) is 75.3 J/mol*K enthalpy of fusion of H20 is 6.01 kJ/mol
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0...
Two 20.0-g ice cubes at –13.0 °C are placed into 275 g of water at 25.0 °C. Assuming no energy is transferred to or from the surroundings, calculate the final temperature of the water after all the ice melts. heat capacity of H2O(s) 37.7 J/(mol*k) heat capacity of H2O(l) 75.3 J/(mol*k) enthalpy of fusion of H2O 6.01 kJ/mol
Part A Calculate the enthalpy change, ΔH, for the process in which 44.0 g of water...
Part A Calculate the enthalpy change, ΔH, for the process in which 44.0 g of water is converted from liquid at 7.6 ∘C to vapor at 25.0 ∘C . For water, ΔHvap = 44.0 kJ/mol at 25.0 ∘C and s = 4.18 J/(g⋅∘C) for H2O(l) Express your answer numerically in kilojoules. Part B How many grams of ice at -11.0 ∘C can be completely converted to liquid at 9.4 ∘C if the available heat for this process is 5.66×103 kJ...