Question

Please draw a phase diagram of the system: x' = 6x - x^2 - xy y'...

Please draw a phase diagram of the system:

x' = 6x - x^2 - xy

y' = -2y + xy

The critical points are and their type are:

(0,0) unstable saddle

(6,0) unstable saddle

(2,4) stable/asympotically satble spiral

Homework Answers

Answer #1

actually it is not possible to draw but i will give some points how to draw this phase curve

The phase portrait shows trajectories either moving away from the critical point to infinite-distant away (when r > 0), or moving directly toward, and converge to the critical point (when r < 0). The trajectories that are the eigenvectors move in straight lines. The rest of the trajectories move, initially when near the critical point, roughly in the same direction as the eigenvector of the eigenvalue with the smaller absolute value. Then, farther away, they would bend toward the direction of the eigenvector of the eigenvalue with the larger absolute value The trajectories either move away from the critical point to infinite-distant away (when r are both positive), or move toward from infinite-distant out and eventually converge to the critical point (when r are both negative). This type of critical point is called a node. It is asymptotically stable if r are both negative, unstable if r are both positive.

2

When r1 and r2 have opposite signs (say r1 > 0 and r2 < 0) In this type of phase portrait, the trajectories given by the eigenvectors of the negative eigenvalue initially start at infinite-distant away, move toward and eventually converge at the critical point

Every other trajectory starts at infinite-distant away, moves toward but never converges to the critical point, before changing direction and moves back to infinite-distant away. All the while it would roughly follow the 2 sets of eigenvectors. This type of critical point is called a saddle point. It is always unstable.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the linear system x' = x cos a − y sin a y'= x sin...
Consider the linear system x' = x cos a − y sin a y'= x sin a + y cos a where a is a parameter. Show that as a ranges over [0, π], the equilibrium point at the origin passes through the sequence stable node, stable spiral, center, unstable spiral, unstable node.
following nonlinear system: x' = 2 sin y, y'= x^2 + 2y − 1 find all...
following nonlinear system: x' = 2 sin y, y'= x^2 + 2y − 1 find all singular points in the domain x, y ∈ [−1, 1],determine their types and stability. Find slopes of saddle separatrices. Use this to sketch the phase portrait in the domain x, y ∈ [−1, 1].
Given a nonlinear system   x(t)" + cx(t)' + sin(x(t)) = 0                       (3-1) a) Consider its phase...
Given a nonlinear system   x(t)" + cx(t)' + sin(x(t)) = 0                       (3-1) a) Consider its phase plane by assuming proper parameters of c. Do you have singular points with the cases of CENTER FOCUS, NODE and SADDLE ? Are those stable? asymptotic stable or unstable? b) When c = 0, plot the phase plane and find these singular points
Consider the system [ x' = -2y & y' = 2x] . Use dy/dx to find...
Consider the system [ x' = -2y & y' = 2x] . Use dy/dx to find the curves y = y(x). Draw solution curves in the xy phase plane. What type of equilibrium point is the origin?
Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a constant....
Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a constant. Answer to the following questions. (a) Show that there is no periodic solution in a simply connected region R={(x,y) ∈ R2 | x <0}. (Hint: Use the corollary to Theorem 11.5.1>> If symply connected region R either contains no critical points of plane autonomous system or contains a single saddle point, then there are no periodic solutions. ) (b) Derive a plane autonomous system...
Solve the following system of equations by graphing. y=-1/2 x -5 6x-2y=24
Solve the following system of equations by graphing. y=-1/2 x -5 6x-2y=24
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy -...
Find the Critical point(s) of the function f(x, y) = x^2 + y^2 + xy - 3x - 5. Then determine whether each critical point is a local maximum, local minimum, or saddle point. Then find the value of the function at the extreme(s).
Find a Liapunov function for this gradient system. x'(t) = xy^2, y'(t) = x^2y + y^3.
Find a Liapunov function for this gradient system. x'(t) = xy^2, y'(t) = x^2y + y^3.
consider the 2 variable function f(x,y) = 4 - x^2 - y^2 - 2x - 2y...
consider the 2 variable function f(x,y) = 4 - x^2 - y^2 - 2x - 2y + xy a.) find the x,y location of all critical points of f(x,y) b.) classify each of the critical points found in part a.)
Solve the differential equation by using integrating factors. xy' = 4y − 6x^2 y(x)=?
Solve the differential equation by using integrating factors. xy' = 4y − 6x^2 y(x)=?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT