Question

Consider the system [ x' = -2y & y' = 2x] . Use dy/dx to find...

Consider the system [ x' = -2y & y' = 2x] . Use dy/dx to find the curves y = y(x).

Draw solution curves in the xy phase plane. What type of equilibrium point is the origin?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider the initial value problem dy dx = 1−2x 2y , y(0) = − √2 (a)...
Consider the initial value problem dy dx = 1−2x 2y , y(0) = − √2 (a) (6 points) Find the explicit solution to the initial value problem. (b) (3 points) Determine the interval in which the solution is defined.
dx/dt=y, dy/dt=2x-2y
dx/dt=y, dy/dt=2x-2y
consider the equation y*dx+(x^2y-x)dy=0. show that the equation is not exact. find an integrating factor o...
consider the equation y*dx+(x^2y-x)dy=0. show that the equation is not exact. find an integrating factor o the equation in the form u=u(x). find the general solution of the equation.
Consider the following linear system (with real eigenvalue) dx/dt=-2x+7y dy/dt=x+4y find the specific solution coresponding to...
Consider the following linear system (with real eigenvalue) dx/dt=-2x+7y dy/dt=x+4y find the specific solution coresponding to the initial values (x(0),y(0))=(-5,3)
Solve the following ODE's/ IVP's y'=1/xsin(y)+2sin(2y) Hint: consider x=x(y) and dx/dy=1/(dx/dy)=1/y'
Solve the following ODE's/ IVP's y'=1/xsin(y)+2sin(2y) Hint: consider x=x(y) and dx/dy=1/(dx/dy)=1/y'
(* Problem 3 *) (* Consider differential equations of the form a(x) + b(x)dy /dx=0 *)...
(* Problem 3 *) (* Consider differential equations of the form a(x) + b(x)dy /dx=0 *) \ (* Use mathematica to determin if they are in Exact form or not. If they are, use CountourPlot to graph the different solution curves 3.a 3x^2+y + (x+3y^2)dy /dx=0 3.b cos(x) + sin(x) dy /dx=0 3.c y e^xy+ x e^xydy/dx=0
Consider the following system of differential equations dx/dt = (x^2 + 2x + 1)(x^2 − 4x...
Consider the following system of differential equations dx/dt = (x^2 + 2x + 1)(x^2 − 4x + 4) dy/dt = xy − 1 Which of the following is not an equilibrium point of the above system? (A) (3, 1/3 ) (B) (−1, −1) (C) (1, 1) (D) (1, 3)
Determine the type of below equations and solve it. a-)(sin(xy)+xycos(xy)+2x)dx+(x2cos(xy)+2y)dy=0 b-)(t-a)(t-b)y’-(y-c)=0     a,b,c are constant.
Determine the type of below equations and solve it. a-)(sin(xy)+xycos(xy)+2x)dx+(x2cos(xy)+2y)dy=0 b-)(t-a)(t-b)y’-(y-c)=0     a,b,c are constant.
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y...
Initial value problem : Differential equations: dx/dt = x + 2y dy/dt = 2x + y Initial conditions: x(0) = 0 y(0) = 2 a) Find the solution to this initial value problem (yes, I know, the text says that the solutions are x(t)= e^3t - e^-t and y(x) = e^3t + e^-t and but I want you to derive these solutions yourself using one of the methods we studied in chapter 4) Work this part out on paper to...
Use the Laplace transform to solve the given system of differential equations. dx/dt=x-2y dy/dt=5x-y x(0) =...
Use the Laplace transform to solve the given system of differential equations. dx/dt=x-2y dy/dt=5x-y x(0) = -1, y(0) = 6
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT