Question

Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a constant....

Consider the nonlinear second-order differential equation 4x"+4x'+2(k^2)(x^2)− 1/2 =0, where k > 0 is a constant. Answer to the following questions.
(a) Show that there is no periodic solution in a simply connected region R={(x,y) ∈ R2 | x <0}. (Hint: Use the corollary to Theorem 11.5.1>>
If symply connected region R either contains no critical points of plane autonomous system or contains a single saddle point, then there are no periodic solutions. )
(b) Derive a plane autonomous system from the given equation and find all the critical points.
(c) Classify(discriminate/categorize) all the critical points into one of the three categories: {stable / saddle / unstable(not saddle)}.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Given a nonlinear system   x(t)" + cx(t)' + sin(x(t)) = 0                       (3-1) a) Consider its phase...
Given a nonlinear system   x(t)" + cx(t)' + sin(x(t)) = 0                       (3-1) a) Consider its phase plane by assuming proper parameters of c. Do you have singular points with the cases of CENTER FOCUS, NODE and SADDLE ? Are those stable? asymptotic stable or unstable? b) When c = 0, plot the phase plane and find these singular points
] Consider the autonomous differential equation y 0 = 10 + 3y − y 2 ....
] Consider the autonomous differential equation y 0 = 10 + 3y − y 2 . Sketch a graph of f(y) by hand and use it to draw a phase line. Classify each equilibrium point as either unstable or asymptotically stable. The equilibrium solutions divide the ty plane into regions. Sketch at least one solution trajectory in each region.
Consider the autonomous first-order differential equation dy/dx=4y-(y^3). 1. Classify each critical point as asymptotically stable, unstable,...
Consider the autonomous first-order differential equation dy/dx=4y-(y^3). 1. Classify each critical point as asymptotically stable, unstable, or semi-stable. (DO NOT draw the phase portrait and DO NOT sketch the solution curves) 2. Solve the Bernoulli differential equation dy/dx=4y-(y^3).
Consider the equation: x'=x^3-3x^2+2x sketch the phase line. solve the equation and sketch the graphs of...
Consider the equation: x'=x^3-3x^2+2x sketch the phase line. solve the equation and sketch the graphs of some solutions including at least one solution with values in each interval above, below and between the critical points. identify critical points as stable or unstable
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify...
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify the harmonic oscillator (undamped, underdamped, critically damped, over damped). Justify your answer.
solve the differential equation (2y^2+2y+4x^2)dx+(2xy+x)dy=0
solve the differential equation (2y^2+2y+4x^2)dx+(2xy+x)dy=0
1.) A certain region is characterized by a force equation Fx (x)=8x^3-14x-6, where U is in...
1.) A certain region is characterized by a force equation Fx (x)=8x^3-14x-6, where U is in joules and x is in meters. a.) Find the proper units for the 8, 14, and 6. b.) Find an equation for the potential energy U(x). c.) Verify that x= -1, -1/2, 3/2 are each equilibrium points. d.) Which of the equilibrium points are stable? Which are unstable? Which are neutral? Explain.
Given the second-order differential equation y''(x) − xy'(x) + x^2 y(x) = 0 with initial conditions...
Given the second-order differential equation y''(x) − xy'(x) + x^2 y(x) = 0 with initial conditions y(0) = 0, y'(0) = 1. (a) Write this equation as a system of 2 first order differential equations. (b) Approximate its solution by using the forward Euler method.
consider the region r bounded by the parabola y=4x^2 and the lines x=0 and y=16 find...
consider the region r bounded by the parabola y=4x^2 and the lines x=0 and y=16 find the volume of the solid obtained by revolving R about the line x=1
Verify that the function y=x^2+c/x^2 is a solution of the differential equation xy′+2y=4x^2, (x>0). b) Find...
Verify that the function y=x^2+c/x^2 is a solution of the differential equation xy′+2y=4x^2, (x>0). b) Find the value of c for which the solution satisfies the initial condition y(4)=3. c=