Question

Consider the linear system x' = x cos a − y sin a y'= x sin...

Consider the linear system x' = x cos a − y sin a

y'= x sin a + y cos a

where a is a parameter. Show that as a ranges over [0, π], the equilibrium point at the origin passes through the sequence stable node, stable spiral, center, unstable spiral, unstable node.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Problem 7. Consider the line integral Z C y sin x dx − cos x dy....
Problem 7. Consider the line integral Z C y sin x dx − cos x dy. a. Evaluate the line integral, assuming C is the line segment from (0, 1) to (π, −1). b. Show that the vector field F = <y sin x, − cos x> is conservative, and find a potential function V (x, y). c. Evaluate the line integral where C is any path from (π, −1) to (0, 1).
Show that the origin is a spiral point of the system x' = -y - x(sqrt(x2...
Show that the origin is a spiral point of the system x' = -y - x(sqrt(x2 + y2))    y' = x - y(sqrt(x2 + y2)) but a center for its linear approximation
Given a nonlinear system   x(t)" + cx(t)' + sin(x(t)) = 0                       (3-1) a) Consider its phase...
Given a nonlinear system   x(t)" + cx(t)' + sin(x(t)) = 0                       (3-1) a) Consider its phase plane by assuming proper parameters of c. Do you have singular points with the cases of CENTER FOCUS, NODE and SADDLE ? Are those stable? asymptotic stable or unstable? b) When c = 0, plot the phase plane and find these singular points
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin...
Identify the surface with parametrization x = 3 cos θ sin φ, y = 3 sin θ sin φ, z = cos φ where 0 ≤ θ ≤ 2π and 0 ≤ φ ≤ π. Hint: Find an equation of the form F(x, y, z) = 0 for this surface by eliminating θ and φ from the equations above. (b) Calculate a parametrization for the tangent plane to the surface at (θ, φ) = (π/3, π/4).
1.) Let f ( x , y , z ) = x ^3 + y +...
1.) Let f ( x , y , z ) = x ^3 + y + z + sin ⁡ ( x + z ) + e^( x − y). Determine the line integral of f ( x , y , z ) with respect to arc length over the line segment from (1, 0, 1) to (2, -1, 0) 2.) Letf ( x , y , z ) = x ^3 * y ^2 + y ^3 * z^...
Consider the vector field F = <2 x y^3 , 3 x^2 y^2+sin y>. Compute the...
Consider the vector field F = <2 x y^3 , 3 x^2 y^2+sin y>. Compute the line integral of this vector field along the quarter-circle, center at the origin, above the x axis, going from the point (1 , 0) to the point (0 , 1). HINT: Is there a potential?
Consider the spiral given parametrically by x(t)=2e^(−0.1t) * sin(3t) y(t)=2e^(−0.1t) * cos(3t) on the interval 0≤t≤7...
Consider the spiral given parametrically by x(t)=2e^(−0.1t) * sin(3t) y(t)=2e^(−0.1t) * cos(3t) on the interval 0≤t≤7 Fill in the expression which would complete the integral determining the arc length of this spiral on 0≤t≤7, determine the arc length of the given spiral on 0≤t≤7, and determine the arc length of the given spiral on [0,∞). (Note: This is an improper integral.)
Consider the non linear system X dot = y + x(x^2 + y^2 - 1) *...
Consider the non linear system X dot = y + x(x^2 + y^2 - 1) * sin 1 /x^2 + y^2 - 1 Y dot = - x + y(x^2 + y^2 - 1) * sin 1/ x^2 + y^2 - 1 Without solving the above equations explicitly, show that the system has infinite number of limits cycles. Determine the stability of these limit cycles (Hint : Use polar coordinates)
3. Let P = (a cos θ, b sin θ), where θ is not a multiple...
3. Let P = (a cos θ, b sin θ), where θ is not a multiple of π/2 be a point on the ellipse (x 2/ a2 )+ (y 2/ b 2) = 1, where a ≥ b > 0; and let P1 = (a cos θ, a sin θ) the corresponding on the circle x 2 /a2 + y 2/ a2 = 1. Prove that the tangent to the ellipse at P and the tangent to the circle at...
Consider the region bounded by y = sin x and y = − sin x from...
Consider the region bounded by y = sin x and y = − sin x from x = 0 to x = π. a) Draw the solid obtained by rotating this region about the line x = 2π. b) Which method (washers or shells) is preferable for finding the volume of this solid? Explain. c) Determine the volume of the solid