Question

1) An electric field is directed in the +î direction. An electron is fired in the...

1) An electric field is directed in the +î direction. An electron is fired in the +î direction into the field. Its potential energy ________ and its kinetic energy_________. Think about this from a kinematics perspective.
NOTE: You must provide an explanation for your answer to receive credit.

a.  increases; increases

b.  decreases; increases

c.  increases; decreases

d.  decreases; decreases

2) You find the following statements on a popular physics-student website. If the statement is correct, explain why. If the statement is incorrect, explain why it is not.

"If an individual particle's charge-to-mass ratio doubles, its acceleration will also double if it is placed in a uniform electric field."

"The electric force on a particle doubles if its mass doubles."

Homework Answers

Answer #1

***************************************************************************************************
Check the answer and let me know immediately if you find something wrong... I will rectify the mistakes asap if any

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron is moving in the direction of a uniform electric field. What happens to the...
An electron is moving in the direction of a uniform electric field. What happens to the potential energy of the electron? Is the electron moving to a location of lower or higher potential? a.potential energy increases, higher potential. b.potential energy increases, lower potential. c.potential energy decreases, higher potential. d. potential energy decreases, lower potential
An electron traveling at 106m/s horizontally enters a region with a uniform electric field 10-6N/C directed...
An electron traveling at 106m/s horizontally enters a region with a uniform electric field 10-6N/C directed upward. What will be the acceleration of the electron (magnitude and direction)? Calculate its vertical component of velocity 1s after it enters the region with an electric field. What distance the electron will travel in horizontal and vertical directions during first 1 second after entering the region with an electric field?
An electron is traveling through a uniform electric field. The constant electric field is given by...
An electron is traveling through a uniform electric field. The constant electric field is given by . At t = 0, the electron is at (0, 0) and traveling in the positive z direction with a speed of 5 m/s. a) What is its position 5.0 s later? b) What is the magnitude and direction of the particle's velocity at 5.0 s? EDIT: Oops! E = (-3.00 x 10^-11 N/C)i - (2.00 x 10^-11 N/C) j + (1.00 x 10^-11...
if a proton is placed in a uniform electric field, and an electron is palced in...
if a proton is placed in a uniform electric field, and an electron is palced in another uniform electric field of the same wavelength, will the electron or the proton accerate more slowly? explain. what physics concept does this apply to
A uniform (Constant in magnitude and direction) electric field has magnitude E and is directed in...
A uniform (Constant in magnitude and direction) electric field has magnitude E and is directed in the negative x direction. The potential difference between point a (at x= 0.50 m ) and point b (at x= 0.85 m ) is 370 V. A) Calculate the value of E B) A negatively charged point charge q=−0.200μC is moved from b to a. Calculate the work done on the point charge by the electric field.
Which of the following is a correct statement? (1 point) The direction of the electric field...
Which of the following is a correct statement? (1 point) The direction of the electric field due to a negative point charge is directed away from the charge. The direction of the electric force on a positive charge is opposite to the direction of the electric field at its location. The magnitude of the electric field due to a point charge is inversely proportional to the square of the distance between the charge and the point. The unit of measurement...
A uniform electric field of magnitude 35 V/m is directed in the negative y direction as...
A uniform electric field of magnitude 35 V/m is directed in the negative y direction as shown in the figure. The coordinates of point A are (-0.2, -0.3) m, and those of point B are (0.4, 0.5) m. The electric potential difference VB - VA using the dashed-line path.
An electron is moving east in a uniform electric field of 1.54 N/CN/C directed to the...
An electron is moving east in a uniform electric field of 1.54 N/CN/C directed to the west. At point A, the velocity of the electron is 4.52×105 m/sm/s pointed toward the east. What is the speed of the electron when it reaches point B, which is a distance of 0.355 mm east of point A? Express your answer in meters per second.
The electric field in a region is uniform and directed in the −x direction as shown...
The electric field in a region is uniform and directed in the −x direction as shown by the gray arrow in the diagram below. The magnitude of this field is 300 N/C. The (x, y) coordinates of A, B, and C are as follows: A = (2.2, 7.5) m; B = (2.2, −1.2) m; C = (−0.5, 0.8) m. (a) What is the work done in moving a positive charge q = 11 nC from B to A? (b) What...
Part A An electron is moving east in a uniform electric field of 1.51 N/CN/C directed...
Part A An electron is moving east in a uniform electric field of 1.51 N/CN/C directed to the west. At point A, the velocity of the electron is 4.53×105 m/sm/s pointed toward the east. What is the speed of the electron when it reaches point B, which is a distance of 0.360 mm east of point A? Express your answer in meters per second. Part B A proton is moving in the uniform electric field of part A. At point...