Question

In the following two problems, the equivalence classes refer to the equivalence classes under the equivalence...

In the following two problems, the equivalence classes refer to the equivalence classes under the equivalence relation:

aRb iff n|(a-b) where n is a fixed integer. Suppose a, b, c, d are elements of the integers such that [a] = [b] and [c] = [d].

1. Prove [a+d] = [b+c].

2. Prove [ac] = [bd]

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Recall from class that we defined the set of integers by defining the equivalence relation ∼...
Recall from class that we defined the set of integers by defining the equivalence relation ∼ on N × N by (a, b) ∼ (c, d) =⇒ a + d = c + b, and then took the integers to be equivalence classes for this relation, i.e. Z = [(a, b)]∼ | (a, b) ∈ N × N . We then proceeded to define 0Z = [(0, 0)]∼, 1Z = [(1, 0)]∼, − [(a, b)]∼ = [(b, a)]∼, [(a, b)]∼...
For each of the following, prove that the relation is an equivalence relation. Then give the...
For each of the following, prove that the relation is an equivalence relation. Then give the information about the equivalence classes, as specified. a) The relation ∼ on R defined by x ∼ y iff x = y or xy = 2. Explicitly find the equivalence classes [2], [3], [−4/5 ], and [0] b) The relation ∼ on R+ × R+ defined by (x, y) ∼ (u, v) iff x2v = u2y. Explicitly find the equivalence classes [(5, 2)] and...
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How...
9e) fix n ∈ ℕ. Prove congruence modulo n is an equivalence relation on ℤ. How many equivalence classes does it have? 9f) fix n ∈ ℕ. Prove that if a ≡ b mod n and c ≡ d mod n then a + c ≡b + d mod n. 9g) fix n ∈ ℕ.Prove that if a ≡ b mod n and c ≡ d mod n then ac ≡bd mod n.
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. I need to prove that: a) R is an equivalence relation. (which I have) b) The equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq I...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R...
Determine the distance equivalence classes for the relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. I had to prove it was an equivalence relation as well, but that part was not hard. Just want to know if the logic and presentation is sound for the last part: 8.48) A relation R is defined on ℤ by a R b if |a - 2| = |b - 2|. Prove that R...
Abstract Algebra I Corollary 1.26- Two equivalence classes of an equivalence relation are either disjoint or...
Abstract Algebra I Corollary 1.26- Two equivalence classes of an equivalence relation are either disjoint or equal. Corollary 2.11- Let a and b be two integers that are relatively prime. Then there exist integers r and s such that ar+bs=1. PLEASE ANSWER THE FOLLOWING: 1) Why is Corollary 1.26 true? 2) Why is Corollary 2.11 true?
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Show that the equivalence classes of R correspond to the elements of  ℤpq. That is: [a] = [b] as equivalence classes of R if and only if [a] = [b] as elements of ℤpq. you may use the following lemma: If p is prime...
Let p and q be any two distinct prime numbers and define the relation a R...
Let p and q be any two distinct prime numbers and define the relation a R b on integers a,b by: a R b iff b-a is divisible by both p and q. For this relation R: Prove that R is an equivalence relation. you may use the following lemma: If p is prime and p|mn, then p|m or p|n
Consider the following relation ∼ on the set of integers a ∼ b ⇐⇒ b 2...
Consider the following relation ∼ on the set of integers a ∼ b ⇐⇒ b 2 − a 2 is divisible by 3 Prove that this is an equivalence relation. List all equivalence classes.
Prove the following by contraposition: If the product of two integers is not divisible by an...
Prove the following by contraposition: If the product of two integers is not divisible by an integer n, then neither integer is divisible by n. (Match the Numbers With the Letter to the right) 1 Contraposition ___ A x = kn where k is also an integer 2 definition of divisible ___ B xy is divisible by n 3 by substitution ___ C xy = (kn)y 4 by associative rule ___ D If the product of two integers is not...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT