Question

A small block of mass m sits on the center of a dome of radius R....

A small block of mass m sits on the center of a dome of radius R. (Just to be perfectly clear, a dome is an upside-down hemisphere, like the top of a silo.) It is perfectly balanced at the moment, but then a slight breeze comes along and pushes it off in one direction. The rock will pick up speed as it slides down the side of the dome, and at some point it will end up going fast enough that it will lose contact with the dome.

Assuming the dome is frictionless and that initial speed from the breeze is so small as to be negligible, at what angle will the rock lose contact, measured in degrees? Measure the angle from the vertical, so that the rock started out at 0 degrees when it was balanced at the top and increases as the rock slides along the dome.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block of mass M sits at rest at the top of a frictionless curved ramp...
A block of mass M sits at rest at the top of a frictionless curved ramp of height h. After being released, the block is moving with speed 4v when it collides with a block of mass 1.5M at the bottom of the ramp. Immediately following the collision, the larger block has a speed 2v. The second block is attached to a vertical rope, and swings freely as a pendulum after the collision. The pendulum string has length L. a)...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
There is a variable amount of friction between a block of mass m and a ramp...
There is a variable amount of friction between a block of mass m and a ramp at an angle θ above the horizontal. The kinetic and static coefficients of friction are equal but vary as µ=Ax, where x is measured along the ramp and x = 0 is the bottom of the ramp. The block is sent up the ramp with an initial speed v0, and comes to a stop somewhere on the ramp. In the following parts, take your...
1) a) A block of mass m slides down an inclined plane starting from rest. If...
1) a) A block of mass m slides down an inclined plane starting from rest. If the surface is inclined an angle theta above the horizontal, and the block reaches a speed V after covering a distance D along the incline, what is the coefficient of kinetic friction? b) at a distance D1 (still on the incline), the block comes to an instantaneous standstill against a spring with spring constant k. How far back up does the block? Why do...
QUESTION 1. A ferris wheel has a radius of 12 m. The center of the ferris...
QUESTION 1. A ferris wheel has a radius of 12 m. The center of the ferris wheel is 14 m above the ground. When it is rotating at full speed the ferris wheel takes 10 s to make a full turn. We can track one seat on the ferris wheel. Let’s define t = 0 to be a time when that seat is at the top of the ferris wheel while the ferris wheel is rotating at full speed. (a)...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT