Question

A block of mass M sits at rest at the top of a frictionless curved ramp...

A block of mass M sits at rest at the top of a frictionless curved ramp of height h. After being released, the block is moving with speed 4v when it collides with a block of mass 1.5M at the bottom of the ramp. Immediately following the collision, the larger block has a speed 2v. The second block is attached to a vertical rope, and swings freely as a pendulum after the collision. The pendulum string has length L.

a) In terms of the other given variables, determine an expression for the height h.

b) Determine the speed and direction of the first block after the collision. Determine the maximum angle from the vertical to which the pendulum will rise after the collision.

c) Determine whether the collision was elastic or inelastic. Justify your answer!

d) If the small block had not hit the larger block, it would have slid onto a flat surface, moving a distance D before coming to rest. Determine the coefficient of kinetic friction between the small block and the flat surface.

Homework Answers

Answer #1

Please rate it up thanks :(

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height...
block 1 of mass m1 slides from rest along a frictionless ramp from an unknown height h and then collides with stationary block 2, which has mass m2 = 3m1 . The collision is an elastic one. After the collision, block 2 slides into a friction-filled region where the coefficient of kinetic friction is 0.5 and comes to a stop through a distance d = 10 m in that region. What is the height h?
Two blocks of masses m1 = 1.95 kg and m2 = 3.90 kg are each released...
Two blocks of masses m1 = 1.95 kg and m2 = 3.90 kg are each released from rest at a height of h = 6.00 m on a frictionless track, as shown in the figure below, and undergo an elastic head-on collision. (Let the positive direction point to the right. Indicate the direction with the sign of your answer.) Two blocks are on a curved ramp similar in shape to a half-pipe. There is a flat horizontal surface with opposite...
a block of mass m1=3kg, starting from rest at a height h, slides down a frictionless...
a block of mass m1=3kg, starting from rest at a height h, slides down a frictionless ramp along a frictionless surface before it collides and sticks to a second block m2= 4kg. the second block is attatched to a spring with a spring constant of 252N/m which is fixed to a rigid wall at its other end. after the collision the blocks compress the spring 0.30 meters before they momentarily come to rest. from what height h did the first...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp...
A block of mass 19.6 kg starts at rest at the top of a frictionless ramp that makes an angle of 36.2 ^\circ ∘ below the horizontal. After it slides without friction down the entire 2.89 m length of the ramp, it begins to slide horizontally along a rough concrete surface with a coefficient of kinetic friction of \mu_kμ k = 0.503 until it slows to a complete stop. How far does the block slide horizontally along the concrete before...
Blocks of mass m1 and m2 slide on a track that consists of two curved, frictionless...
Blocks of mass m1 and m2 slide on a track that consists of two curved, frictionless sections connected by a straight, horizontal surface of length L. The mass of block 2 is 1.5 times the mass of block 1, that is, m2= 1.50m1. The coefficient of kinetic friction between the blocks and the horizontal surface is 0.32. Block m1 is released from rest at height H= 5.00L above the horizontal surface and sticks to block m2 when they collide. Determine...
A block with mass 0.460 kg sits at rest on a light but not long vertical...
A block with mass 0.460 kg sits at rest on a light but not long vertical spring that has spring constant 85.0 N/m and one end on the floor. a)How much elastic potential energy is stored in the spring when the block is sitting at rest on it? ANS 0.12J b) A second identical block is dropped onto the first from a height of 4.10 mm above the first block and sticks to it. What is the maximum elastic potential...
A block of mass m = 2.10 kg starts from the rest and slides down a...
A block of mass m = 2.10 kg starts from the rest and slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.50 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. a) Determine the speed of the block with mass m = 2.10 kg after the...
A mass 1.9 kg is initially at rest at the top of a 2meter high ramp....
A mass 1.9 kg is initially at rest at the top of a 2meter high ramp. It slides down the frictionless ramp and collides elastically with an unknown mass which is initially at rest. After colliding with the unknown mass, the 1.9 kg mass recoils and achieves a maximum height (altitude) of only 0.2 m going back up the frictionless ramp. (HINT: Solving each part in sequence will guide you to a solution without doing a lot of algebra.) 1.Considering...
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes...
A block of mass m=1.4 kg, moving on frictionless surface with a speed v1i=5.3 m/s, makes a perfectly elastic collision with a block of mass M at rest, see the sketch. After the collision, the 1.4 kg block recoils with a speed of v1f=0.3 m/s. What is the speed of block M after the collision? A. v2f=4.8 m/s B. v2f=5.2 m/s C. v2f=3.4 m/s D. v2f=5.0 m/s
A pendulum bob, with mass 1.60 kg, is held at rest initially in a horizontal position...
A pendulum bob, with mass 1.60 kg, is held at rest initially in a horizontal position as shown. The string has negligible mass and a length of 1.20 m. The bob is then released from rest. It swings down and collides with a block of mass 2.40 kg initially at rest. Ignore air resistance. a) Use the Principle of Conservation of Mechanical Energy to find the speed of the pendulum bob just before the collision. b) (The bob collides with...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT